Dysgonomonas massiliensis sp. nov., a new species isolated from the human gut and its taxonogenomic description
Abstract
Culturomics has allowed the isolation of a significant number of new bacterial species from the human gut microbiota and proved to be a valuable complement to culture-independent techniques. Using this culture-based approach, a new bacterial species has been isolated from a stool sample of a 39-year-old healthy Pygmy male and described using the taxonogenomic strategy. Cells of strain Marseille-P4356T are Gram-stain negative cocci. The strain grows optimally at 37 °C and is catalase positive but oxidase negative. Its 16S rRNA gene sequence exhibited 92.96% sequence similarity with Dysgonomonas gadei strain JCM 16698T (NR_113134.1), currently its phylogenetically closest species that has been validly named. The genome of strain Marseille-P4356T is 3,472,011 bp long with 37.3 mol% G+C content. Phenotypic, biochemical, proteomic, genomic and phylogenetic analyses, clearly demonstrate that strain Marseille-P4356T (= CCUG 71356T = CSUR P4356T) represents a new species within the genus Dysgonomonas, for which we propose the name Dysgonomonas massiliensis sp. nov.
Keywords
Culturomics Taxono-genomics Pygmy Dysgonomonas massiliensis Gut microbiotaNotes
Acknowledgements
This study was supported by IHU Méditerranée Infection, Marseille, France and by the French Government under the «Investissements d’avenir» (Investments for the Future) program managed by the Agence Nationale de la Recherche (ANR, fr: National Agency for Research), (reference: Méditerranée Infection 10-IAHU- 03). This work was supported by Région Provence Alpes Côte d’Azur and European funding FEDER PRIMI.
Authors’ contribution
MB: Isolated, described and wrote the manuscript; MDMF: helped in the taxonogenomics description, GD: critical analysis of the work and wrote the manuscript, ET: Genomic analysis, MR: helped in the taxonogenomics description, JD: genomic analysis, AL: helped in the genomic analyses, ZD: writing an critical analysis of the manuscript, DR: designed the project, helped in writing, reviewing and critical analysis; FC: study design, data analysis and writing the manuscript.
Compliance with ethical standards
Conflict of interest
The authors declare no conflict of interest.
Supplementary material
References
- Arber W (2014) Horizontal gene transfer among bacteria and its role in biological evolution. Life Open Access J 4:217–224. https://doi.org/10.3390/life4020217 Google Scholar
- Aziz RK, Bartels D, Best AA et al (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genom 9:75. https://doi.org/10.1186/1471-2164-9-75 CrossRefGoogle Scholar
- Bilen M, Cadoret F, Richez M et al (2017) Libanicoccus massiliensis gen. nov., sp. nov., a new bacterium isolated from human stool. New Microbes New Infect 21:63–71. https://doi.org/10.1016/j.nmni.2017.11.001 CrossRefGoogle Scholar
- Bilen M, Dufour J-C, Lagier J-C et al (2018) The contribution of culturomics to the repertoire of isolated human bacterial and archaeal species. Microbiome 6:94. https://doi.org/10.1186/s40168-018-0485-5 CrossRefGoogle Scholar
- Brettin T, Davis JJ, Disz T et al (2015) RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 5:8365. https://doi.org/10.1038/srep08365 CrossRefGoogle Scholar
- Carver T, Thomson N, Bleasby A et al (2009) DNAPlotter: circular and linear interactive genome visualization. Bioinformatics 25:119–120. https://doi.org/10.1093/bioinformatics/btn578 CrossRefGoogle Scholar
- Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148:1258–1270. https://doi.org/10.1016/j.cell.2012.01.035 CrossRefGoogle Scholar
- Dione N, Sankar SA, Lagier J-C et al (2016) Genome sequence and description of Anaerosalibacter massiliensis sp. nov. New Microbes New Infect 10:66–76. https://doi.org/10.1016/j.nmni.2016.01.002 CrossRefGoogle Scholar
- Drancourt M, Berger P, Raoult D (2004) Systematic 16S rRNA gene sequencing of atypical clinical isolates identified 27 new bacterial species associated with humans. J Clin Microbiol 42:2197–2202CrossRefGoogle Scholar
- Fournier P-E, Drancourt M (2015) New Microbes New Infections promotes modern prokaryotic taxonomy: a new section “TaxonoGenomics: new genomes of microorganisms in humans”. New Microbes New Infect 7:48–49. https://doi.org/10.1016/j.nmni.2015.06.001 CrossRefGoogle Scholar
- Greub G (2012) Culturomics: a new approach to study the human microbiome. Clin Microbiol Infect 18:1157–1159. https://doi.org/10.1111/1469-0691.12032 CrossRefGoogle Scholar
- Hofstad T, Olsen I, Eribe ER et al (2000) Dysgonomonas gen. nov. to accommodate Dysgonomonas gadei sp. nov., an organism isolated from a human gall bladder, and Dysgonomonas capnocytophagoides (formerly CDC group DF-3). Int J Syst Evol Microbiol 50:2189–2195. https://doi.org/10.1099/00207713-50-6-2189 CrossRefGoogle Scholar
- Isenberg HD (1988) Pathogenicity and virulence: another view. Clin Microbiol Rev 1:40–53CrossRefGoogle Scholar
- Kim M, Oh H-S, Park S-C, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351. https://doi.org/10.1099/ijs.0.059774-0 CrossRefGoogle Scholar
- Kita A, Miura T, Okamura Y et al (2015) Dysgonomonas alginatilytica sp. nov., an alginate-degrading bacterium isolated from a microbial consortium. Int J Syst Evol Microbiol 65:3570–3575. https://doi.org/10.1099/ijsem.0.000459 CrossRefGoogle Scholar
- Kodama Y, Shimoyama T, Watanabe K (2012) Dysgonomonas oryzarvi sp. nov., isolated from a microbial fuel cell. Int J Syst Evol Microbiol 62:3055–3059. https://doi.org/10.1099/ijs.0.039040-0 CrossRefGoogle Scholar
- Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for Bigger Datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054 CrossRefGoogle Scholar
- Lagesen K, Hallin P, Rødland EA et al (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. https://doi.org/10.1093/nar/gkm160 CrossRefGoogle Scholar
- Lagier J-C, Armougom F, Million M et al (2012a) Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 18:1185–1193. https://doi.org/10.1111/1469-0691.12023 CrossRefGoogle Scholar
- Lagier J-C, El Karkouri K, Nguyen T-T et al (2012b) Non-contiguous finished genome sequence and description of Anaerococcus senegalensis sp. nov. Stand Genomic Sci 6:116–125. https://doi.org/10.4056/sigs.2415480 CrossRefGoogle Scholar
- Lagier J-C, Khelaifia S, Alou MT et al (2016) Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol 1:16203. https://doi.org/10.1038/nmicrobiol.2016.203 CrossRefGoogle Scholar
- Lawson PA, Falsen E, Inganäs E et al (2002) Dysgonomonas mossii sp. nov., from human sources. Syst Appl Microbiol 25:194–197. https://doi.org/10.1078/0723-2020-00107 CrossRefGoogle Scholar
- Lawson PA, Carlson P, Wernersson S et al (2010) Dysgonomonas hofstadii sp. nov., isolated from a human clinical source. Anaerobe 16:161–164. https://doi.org/10.1016/j.anaerobe.2009.06.005 CrossRefGoogle Scholar
- Lee I, Ouk Kim Y, Park S-C, Chun J (2016) OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 66:1100–1103. https://doi.org/10.1099/ijsem.0.000760 CrossRefGoogle Scholar
- Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60. https://doi.org/10.1186/1471-2105-14-60 CrossRefGoogle Scholar
- Million M, Tidjani Alou M, Khelaifia S et al (2016) Increased gut redox and Depletion of anaerobic and methanogenic prokaryotes in severe acute malnutrition. Sci Rep 6:26051. https://doi.org/10.1038/srep26051 CrossRefGoogle Scholar
- Murray PR, Rosenthal KS, Pfaller MA (2013) Medical microbiology, with student consult online Access, 7. Medical Microbiology. Elsevier Health SciencesGoogle Scholar
- Overbeek R, Olson R, Pusch GD et al (2014) The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–D214. https://doi.org/10.1093/nar/gkt1226 CrossRefGoogle Scholar
- Penadés JR, Chen J, Quiles-Puchalt N et al (2015) Bacteriophage-mediated spread of bacterial virulence genes. Curr Opin Microbiol 23:171–178. https://doi.org/10.1016/j.mib.2014.11.019 CrossRefGoogle Scholar
- Pramono AK, Sakamoto M, Iino T et al (2015) Dysgonomonas termitidis sp. nov., isolated from the gut of the subterranean termite Reticulitermes speratus. Int J Syst Evol Microbiol 65:681–685. https://doi.org/10.1099/ijs.0.070391-0 CrossRefGoogle Scholar
- Rosselló-Móra R, Trujillo ME, Sutcliffe IC (2017) Introducing a digital protologue: a timely move towards a database-driven systematics of archaea and bacteria. Antonie Van Leeuwenhoek 110:455–456. https://doi.org/10.1007/s10482-017-0841-7 CrossRefGoogle Scholar
- Seng P, Rolain J-M, Fournier PE et al (2010) MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol 5:1733–1754. https://doi.org/10.2217/fmb.10.127 CrossRefGoogle Scholar
- Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023 Google Scholar
- Tateno Y, Takezaki N, Nei M (1994) Relative efficiencies of the maximum-likelihood, neighbor-joining, and maximum-parsimony methods when substitution rate varies with site. Mol Biol Evol 11:261–277. https://doi.org/10.1093/oxfordjournals.molbev.a040108 Google Scholar
- Tidjani Alou M, Million M, Traore SI et al (2017) Gut bacteria missing in severe acute malnutrition, can we identify potential probiotics by culturomics? Front Microbiol 8:899. https://doi.org/10.3389/fmicb.2017.00899 CrossRefGoogle Scholar
- Togo AH, Durand G, Khelaifia S et al (2017) Fournierella massiliensis gen. nov., sp. nov., a new human-associated member of the family Ruminococcaceae. Int J Syst Evol Microbiol 67:1393–1399. https://doi.org/10.1099/ijsem.0.001826 CrossRefGoogle Scholar
- Wallace PL, Hollis DG, Weaver RE, Moss CW (1989) Characterization of CDC group DF-3 by cellular fatty acid analysis. J Clin Microbiol 27:735–737Google Scholar
- Yang Y, Zhang N, Ji S et al (2014) Dysgonomonas macrotermitis sp. nov., isolated from the hindgut of a fungus-growing termite. Int J Syst Evol Microbiol 64:2956–2961. https://doi.org/10.1099/ijs.0.061739-0 CrossRefGoogle Scholar
- Zhao G, Nyman M, Jönsson JA (2006) Rapid determination of short-chain fatty acids in colonic contents and faeces of humans and rats by acidified water-extraction and direct-injection gas chromatography. Biomed Chromatogr BMC 20:674–682. https://doi.org/10.1002/bmc.580 CrossRefGoogle Scholar
- Zhou Y, Liang Y, Lynch KH et al (2011) PHAST: a fast phage search tool. Nucleic Acids Res 39:W347–W352. https://doi.org/10.1093/nar/gkr485 CrossRefGoogle Scholar