Advertisement

Pigments in an iridescent bacterium, Cellulophaga fucicola, isolated from Antarctica

  • Tiago R. Silva
  • Ramon Canela-Garayoa
  • Jordi Eras
  • Marili V. N. Rodrigues
  • Fábio N. dos Santos
  • Marcos N. Eberlin
  • Iramaia A. Neri-Numa
  • Glaucia M. Pastore
  • Renata S. N. Tavares
  • Hosana M. Debonsi
  • Lorena R. G. Cordeiro
  • Luiz H. Rosa
  • Valéria M. Oliveira
Short Communication

Abstract

An iridescent yellow pigmented bacterium isolated from the Antarctic continent, named Cellulophaga fucicola strain 416, was found to be able to tolerate UV-B radiation. Its crude pigment extract was tested for antioxidant capacity, UV light stability and phototoxicity profile against murine fibroblast lines. The pigments were further isolated and chemically identified by ultra-high-performance liquid chromatography with photodiode array and mass spectrometry detectors. The results showed that the pigment extract presented weak stability under exposure to UV light, a phototoxic profile in the 3t3 Neutral Red Uptake test and a very high antioxidant activity, suggesting that it could be used as food and feed colourants. Zeaxanthin and two isomers of zeaxanthin, β-cryptoxanthin and β-carotene, were identified using a C18 column. These five carotenoids were the major pigments isolated from C. fucicola 416. In conclusion, the identification of pigments produced by the bacterial strain under study may help us understand how bacteria thrive in high UV and cold environments, and opens avenues for further biotechnological application towards a more sustainable and environmentally friendly way of pigment exploitation.

Keywords

Iridescent bacterium Cellulophaga fucicola Antioxidant Carotenoids Antarctic Pigments 

Notes

Acknowledgements

We would like to thank the MycoAntar Project (CNPq), and the Brazilian Antarctic Program for making the sampling feasible in the OPERANTAR XXXIII (summer 2014/2015) and OPERANTAR XXXIV (summer 2015/2016).

Author contribution

RC-G and JE helped with the carotenoids identification. MVNR, FNdosS, MNE, helped with HPLC/MS interpretations. IAN-N and GMP performed the antioxidant tests. RSNT, HMD and LRGC performed the phototoxicity and photostability tests. LHR was the responsible for the Antarctica expedition, who made the sample collection feasible. VMO is the chief of laboratory.

Funding

This study was funded by São Paulo Research Foundation—FAPESP (Grant Nos. 2014/17936-1, 2016/05640-6, 2017/21790-0).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10482_2018_1179_MOESM1_ESM.docx (747 kb)
Supplementary material 1 (DOCX 746 kb)

References

  1. Abahusain MA, Wright J, Dickerson JW, de Vol EB (1999) Retinol, alpha-tocopherol and carotenoids in diabetes. Eur J Clin Nutr 53:630–635.  https://doi.org/10.1038/sj.ejcn.1600825 CrossRefPubMedGoogle Scholar
  2. Abt B, Lu M, Misra M et al (2011) Complete genome sequence of Cellulophaga algicola type strain (IC166 T). Stand Genom Sci 4:72–80.  https://doi.org/10.4056/sigs.1543845 CrossRefGoogle Scholar
  3. Augustin C, Collombel C, Damour O (1997) Use of dermal equivalent and skin equivalent models for identifying phototoxic compounds in vitro. Photodermatol Photoimmunol Photomed 13:27–36.  https://doi.org/10.1111/j.1600-0781.1997.tb00105.x CrossRefPubMedGoogle Scholar
  4. Bohm V, Pupsitasari-Nienaber NL, Ferruzzi MG, Scharwts SJ (2002) Trolox equivalent antioxidant capacity of different isomers of a-carotene, b-crotène, lycopene, and zeaxanthin. J Agric Food Chem 50:221–226.  https://doi.org/10.1021/jf010888q CrossRefPubMedGoogle Scholar
  5. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28:25–30.  https://doi.org/10.1016/S0023-6438(95)80008-5 CrossRefGoogle Scholar
  6. Britton G, Liaaen-Jensen S, Pfander H (eds) (2004) Carotenoids. Birkhauser, BaselGoogle Scholar
  7. Burri BJ (1997) Beta-carotene and human health: a review of current research. Nutr Res 17:547–580CrossRefGoogle Scholar
  8. Burri BJ, La Frano MR, Zhu CH (2016) Absorption, metabolism, and functions of B-cryptoxanthin. Nutr Rev 74:69–82.  https://doi.org/10.1093/nutrit/nuv064 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carbonneau MA, Melin AM, Perromat A, Clerc M (1989) The action of free radicals on Deinococcus radiodurans carotenoids. Arch Biochem Biophys 275:244–251.  https://doi.org/10.1016/0003-9861(89)90370-6 CrossRefPubMedGoogle Scholar
  10. Cutler RG (1984) Carotenoids and retinol: their possible importance in determining longevity of primate species. Proc Natl Acad Sci USA 81:7627–7631.  https://doi.org/10.1073/pnas.81.23.7627 CrossRefPubMedGoogle Scholar
  11. Dávalos A, Gómez-Cordovés C, Bartolomé B (2004) Extending applicability of the oxygen radical absorbance capacity (ORAC-fluorescein) assay. J Agric Food Chem 52:48–54.  https://doi.org/10.1021/jf0305231 CrossRefPubMedGoogle Scholar
  12. Del Campo JA, García-González M, Guerrero MG (2007) Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–1174CrossRefGoogle Scholar
  13. Delgado-Vargas F, Jiménez AR, Paredes-López O, Francis FJ (2000) Natural pigments: carotenoids, anthocyanins, and betalains—characteristics, biosynthesis, processing, and stability. Crit Rev Food Sci Nutr 40:173–289.  https://doi.org/10.1080/10408690091189257 CrossRefPubMedGoogle Scholar
  14. Delpino-Rius A, Eras J, Marsol-Vall A et al (2014) Ultra performance liquid chromatography analysis to study the changes in the carotenoid profile of commercial monovarietal fruit juices. J Chromatogr A 1331:90–99.  https://doi.org/10.1016/j.chroma.2014.01.044 CrossRefPubMedGoogle Scholar
  15. Doucet SM, Meadows MG (2009) Iridescence: a functional perspective. J R Soc Interface 6:S115–S132.  https://doi.org/10.1098/rsif.2008.0395.focus CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ecvam Db-Alm (2008) 3T3 Neutral Red Uptake (NRU) Phototoxicity Assay DB-ALM Protocol n° 78. ECVAM DB-ALM Protoc 1–19Google Scholar
  17. Ehling-schulz M, Bilger W, Scherer S (1997) UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J Bacteriol 179:1940–1945CrossRefGoogle Scholar
  18. Elisia I, Hu C, Popovich DG, Kitts DD (2006) Antioxidant assessment of an anthocyanin-enriched blackberry extract. Food Chem 101:1052–1058.  https://doi.org/10.1016/j.foodchem.2006.02.060 CrossRefGoogle Scholar
  19. Fiedor J, Burda K (2014) Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6:466–488.  https://doi.org/10.3390/nu6020466 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gammone MA, Riccioni G, D’Orazio N (2015) Marine carotenoids against oxidative stress: effects on human health. Mar Drugs 13:6226–6246CrossRefGoogle Scholar
  21. Gaspar LR, Maia Campos PMBG (2006) Evaluation of the photostability of different UV filter combinations in a sunscreen. Int J Pharm 307:123–128.  https://doi.org/10.1016/j.ijpharm.2005.08.029 CrossRefPubMedGoogle Scholar
  22. Goecke F, Labes A, Wiese J, Imhoff J (2010) Chemical interactions between marine macroalgae and bacteria. Mar Ecol Prog Ser 409:267–299.  https://doi.org/10.3354/meps08607 CrossRefGoogle Scholar
  23. Hammond J, Ciulla TA, Snodderly DM (2002) Macular pigment density is reduced in obese subjects. Invest Ophthalmol Vis Sci 43:47–50PubMedGoogle Scholar
  24. Hertzberg S, Jensen SL (1966) The carotenoids of blue-green algae—II: the carotenoids of Aphanizomenon flos-aquae. Phytochemistry 5:565–570.  https://doi.org/10.1016/S0031-9422(00)83634-1 CrossRefGoogle Scholar
  25. Holzhutter HG (1997) A general measure of in vitro phototoxicity derived from pairs of dose-response curves and its use for predicting the in vivo phototoxicity of chemicals. ATLA 25:445–462Google Scholar
  26. Horta A, Pinteus S, Alves C et al (2014) Antioxidant and antimicrobial potential of the Bifurcaria bifurcata epiphytic bacteria. Mar Drugs 12:1676–1689.  https://doi.org/10.3390/md12031676 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Jagannadham MV, Chattopadhyay MK, Subbalakshmi C et al (2000) Carotenoids of an Antarctic psychrotolerant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium, Sphingobacterium multivorum. Arch Microbiol 173(5–6):418–424CrossRefGoogle Scholar
  28. Kejlová K, Jírová D, Bendová H et al (2007) Phototoxicity of bergamot oil assessed by in vitro techniques in combination with human patch tests. Toxicol In Vitro 21(7):1298–1303.  https://doi.org/10.1016/j.tiv.2007.05.016 CrossRefPubMedGoogle Scholar
  29. Kientz B, Agogué H, Lavergne C et al (2013) Isolation and distribution of iridescent Cellulophaga and other iridescent marine bacteria from the Charente-Maritime coast, French Atlantic. Syst Appl Microbiol 36:244–251.  https://doi.org/10.1016/j.syapm.2013.02.004 CrossRefPubMedGoogle Scholar
  30. Kientz B, Luke S, Vukusic P et al (2016) A unique self-organization of bacterial sub-communities creates iridescence in Cellulophaga lytica colony biofilms. Sci Rep 6:19906.  https://doi.org/10.1038/srep19906 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kinoshita S, Yoshioka S, Miyazaki J (2008) Physics of structural colors. Rep Prog Phys.  https://doi.org/10.1088/0034-4885/71/7/076401 CrossRefGoogle Scholar
  32. Kleinig H, Heumann W, Meister W, Englert G (1977) Carotenoids of Rhizobia. I. New carotenoids from Rhizobium lupini. Helv Chim Acta 60:254–258.  https://doi.org/10.1002/hlca.19770600131 CrossRefPubMedGoogle Scholar
  33. Krinsky NI (2001) Carotenoids as antioxidants. Nutrition 17:815–817CrossRefGoogle Scholar
  34. Kushwaha SC, Pugh EL, Kramer JKG, Kates M (1972) Isolation and identification of dehydrosqualene and C40-carotenoid pigments in Halobacterium cutirubrum. Biochim Biophys Acta (BBA) Lipids Lipid Metab 260:492–506.  https://doi.org/10.1016/0005-2760(72)90064-1 CrossRefGoogle Scholar
  35. Le K, Chiu F, Ng K (2007) Identification and quantification of antioxidants in Fructus lycii. Food Chem 105:353–363.  https://doi.org/10.1016/j.foodchem.2006.11.063 CrossRefGoogle Scholar
  36. Malik K, Tokkas J, Goyal S (2012) Microbial pigments: a review. Int J Microb Resour Technol 1(4):361–365Google Scholar
  37. Mathews MM, Sistrom WR (1959) Function of carotenoid pigments in non-photosynthetic bacteria. Nature 184:1892–1893.  https://doi.org/10.1038/1841892a0 CrossRefPubMedGoogle Scholar
  38. Mathews-Roth MM (1987) Photoprotection by carotenoids. Fed Proc 46:1890–1893.  https://doi.org/10.1016/0378-8741(88)90245-0 CrossRefPubMedGoogle Scholar
  39. Nelis HJ, De Leenheer AP (1991) Microbial sources of carotenoid pigments used in foods and feeds. J Appl Bacteriol 70:181–191CrossRefGoogle Scholar
  40. Nishino H, Murakoshi M, Tokuda H, Satomi Y (2009) Cancer prevention by carotenoids. Arch Biochem Biophys 483:165–168CrossRefGoogle Scholar
  41. OECD (2004) OECD guidelines for the testing of chemicals. Test.  https://doi.org/10.1787/9789264203785-en CrossRefGoogle Scholar
  42. Olson JA (1989) Biological actions of carotenoids. J Nutr 119:94–95.  https://doi.org/10.1093/jn/119.1.94 CrossRefPubMedGoogle Scholar
  43. Palozza P (1998) Prooxidant actions of carotenoids in biologic systems. Nutr Rev 56:257–265.  https://doi.org/10.1111/j.1753-4887.1998.tb01762.x CrossRefPubMedGoogle Scholar
  44. Patel P, Callow ME, Joint I, Callow JA (2003) Specificity in the settlement—modifying response of bacterial biofilms towards zoospores of the marine alga Enteromorpha. Environ Microbiol 5:338–349.  https://doi.org/10.1046/j.1462-2920.2003.00407.x CrossRefPubMedGoogle Scholar
  45. Pati A, Abt B, Teshima H et al (2011) Complete genome sequence of Cellulophaga lytica type strain (LIM-21T). Stand Genom Sci 4:221–232.  https://doi.org/10.4056/sigs.1774329 CrossRefGoogle Scholar
  46. Prior RL, Hoang H, Gu L et al (2003) Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J Agric Food Chem 51:3273–3279.  https://doi.org/10.1021/jf0262256 CrossRefPubMedGoogle Scholar
  47. Rodriguez-Amaya DB (2016) Natural food pigments and colorants. Curr Opin Food Sci 7:20–26CrossRefGoogle Scholar
  48. Rodriguez-Amaya DB, Kimura M (2004) HarvestPlus handbook for carotenoid analysis, vol 2. International Food Policy Research Institute (IFPRI), WashingtonGoogle Scholar
  49. Sajilata MG, Singhal RS, Kamat MY (2008) The carotenoid pigment zeaxanthin—a review. In: Comprehensive reviews in food science and food safety, pp 29–49Google Scholar
  50. Silva TR, Duarte AW, Passarini et al (2018) Bacteria from Antarctic environments: diversity and detection of antimicrobial, antiproliferative, and antiparasitic activities. Polar Biol.  https://doi.org/10.1007/s00300-018-2322-5 CrossRefGoogle Scholar
  51. Spielmann H, Balls M, Dupuis J et al (1998) The international EU/COLIPA in vitro phototoxicity validation study: results of phase II (blind trial). Part 1: the 3T3 NRU phototoxicity test. Toxicol In Vitro 12:305–327.  https://doi.org/10.1016/S0887-2333(98)00006-X CrossRefPubMedGoogle Scholar
  52. Stahl W, Sies H (2003) Antioxidant activity of carotenoids. Mol Asp Med 24:345–351CrossRefGoogle Scholar
  53. Takahashi S, Iwasaki-Kino Y, Aizawa K et al (2016) Development of singlet oxygen absorption capacity (SOAC) assay method using a microplate reader. J AOAC Int 99:193–197.  https://doi.org/10.5740/jaoacint.15-0165 CrossRefPubMedGoogle Scholar
  54. Takaichi S (2014) General methods for identification of carotenoids. Biotechnol Lett 36:1127–1128.  https://doi.org/10.1007/s10529-014-1479-4 CrossRefPubMedGoogle Scholar
  55. Takaichi S, Shimada K, Ishidsu JI (1990) Carotenoids from the aerobic photosynthetic bacterium, Erythrobacter longus: β-carotene and its hydroxyl derivatives. Arch Microbiol 153:118–122.  https://doi.org/10.1007/BF00247807 CrossRefGoogle Scholar
  56. Taylor AJ (1984) Natural colours in food. In: Development in food colour-2. Elsevier Applied Science Publisher, New YorkGoogle Scholar
  57. Tsai PJ, Tsai TH, Ho SC (2007) In vitro inhibitory effects of rosemary extracts on growth and glucosyltransferase activity of Streptococcus sobrinus. Food Chem 105:311–316.  https://doi.org/10.1016/j.foodchem.2006.11.051 CrossRefGoogle Scholar
  58. Venil CK, Zakaria ZA, Ahmad WA (2013) Bacterial pigments and their applications. Process Biochem 48:1065–1079.  https://doi.org/10.1016/j.procbio.2013.06.006 CrossRefGoogle Scholar
  59. Wang W, Bostic TR, Gu L (2010) Antioxidant capacities, procyanidins and pigments in avocados of different strains and cultivars. Food Chem 122:1193–1198.  https://doi.org/10.1016/j.foodchem.2010.03.114 CrossRefGoogle Scholar
  60. Whitehead K, Hedges JI (2005) Photodegradation and photosensitization of mycosporine-like amino acids. J Photochem Photobiol B Biol 80:115–121.  https://doi.org/10.1016/j.jphotobiol.2005.03.008 CrossRefGoogle Scholar
  61. Yokoyama A, Shizuri Y, Hoshino T, Sandmann G (1996) Thermocryptoxanthins: novel intermediates in the carotenoid biosynthetic pathway of Thermus thermophilus. Arch Microbiol 165:342–345.  https://doi.org/10.1007/s002030050336 CrossRefPubMedGoogle Scholar
  62. Young AJ, Lowe GM (2001) Antioxidant and prooxidant properties of carotenoids. Arch Biochem Biophys 385:20–27.  https://doi.org/10.1006/abbi.2000.2149 CrossRefPubMedGoogle Scholar
  63. Zollinger H (2003) Color chemistry: syntheses, properties, and applications of organic dyes and pigments. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Tiago R. Silva
    • 1
    • 2
  • Ramon Canela-Garayoa
    • 3
  • Jordi Eras
    • 3
  • Marili V. N. Rodrigues
    • 4
  • Fábio N. dos Santos
    • 5
  • Marcos N. Eberlin
    • 5
  • Iramaia A. Neri-Numa
    • 6
  • Glaucia M. Pastore
    • 6
  • Renata S. N. Tavares
    • 7
  • Hosana M. Debonsi
    • 7
  • Lorena R. G. Cordeiro
    • 7
  • Luiz H. Rosa
    • 8
  • Valéria M. Oliveira
    • 2
  1. 1.Institute of BiologyCampinas State University (UNICAMP)CampinasBrazil
  2. 2.Division of Microbial Resources, Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA)Campinas State UniversityCampinasBrazil
  3. 3.Department of Chemistry, ETSEAUniversity of Lleida-Agrotecnio CenterLleidaSpain
  4. 4.Department of Organic Chemistry, Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA)Campinas State UniversityCampinasBrazil
  5. 5.ThoMSon Mass Spectrometry LaboratoryCampinas State University (UNICAMP)CampinasBrazil
  6. 6.Department of Food Science, School of Food EngineeringUniversity of Campinas (UNICAMP)CampinasBrazil
  7. 7.School of Pharmaceutical Sciences of Ribeirão PretoUniversity of Sao Paulo (USP)Ribeirão PretoBrazil
  8. 8.Department of Microbiology, Institute of Biological ScienceFederal University of Minas GeraisBelo HorizonteBrazil

Personalised recommendations