Advertisement

Streptomyces monticola sp. nov., a novel actinomycete isolated from soil

  • Dongmei Li
  • Liyuan Han
  • Junwei Zhao
  • Hanxun Ju
  • Shanwen Jiang
  • Xiaowei Guo
  • Xiangjing Wang
  • Wensheng Xiang
Original Paper
  • 16 Downloads

Abstract

A novel actinobacterium, designated strain NEAU-GS4T, was isolated from soil collected from Mount Song and characterised using a polyphasic approach. 16S rRNA gene sequence similarity studies showed that strain NEAU-GS4T belongs to the genus Streptomyces, being closely related to Streptomyces spectabilis JCM 4308T (98.8%), Streptomyces sclerotialus DSM 43032T (98.3%) and Streptomyces lasiicapitis 3H-HV17(2)T (98.0%). A multilocus sequence analysis based on five house-keeping genes (atpD, gyrB, rpoB, recA and trpB) also indicated that strain NEAU-GS4T should be assigned to the genus Streptomyces. The major menaquinones were identified as MK-9(H6), MK-9(H8) and MK-9(H4). The polar lipid profile was found to contain diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylinositolmannosides and an unidentified phospholipid. The major fatty acids were identified as anteiso-C15:0, iso-C16:0 and anteiso-C17:0. Moreover, DNA–DNA hybridization results and some phenotypic characteristics indicated that strain NEAU-GS4T can be clearly differentiated from its closely related species of the genus Streptomyces. Therefore, it is concluded that strain NEAU-GS4T represents a novel species of the genus of Streptomyces, for which the name Streptomyces monticola sp. nov. is proposed. The type stain is NEAU-GS4T (=CGMCC 4.7467T = DSM 105116T).

Keywords

Streptomyces monticola sp. nov. Polyphasic taxonomy 16S rRNA gene 

Notes

Acknowledgements

This work was supported in part by grants from the National Natural Science Foundation of China (No. 31572070). We are grateful to Professor Aharon Oren for helpful advice on the specific epithet.

Author’s contributions

DL performed the laboratory experiments, analyzed the data, and drafted the manuscript. LH contributed to the biochemical characterisation. JZ contributed to the polyphasic taxonomy. HJ contributed to the morphological analyzes. SJ contributed to the fatty acids determination. XG participated in the discussions of each section of experiments. XW and WX designed the experiments and revised the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human participants and/or animals performed by any of the authors. The formal consent is not required in this study.

Supplementary material

10482_2018_1177_MOESM1_ESM.docx (5.1 mb)
Supplementary material 1 (DOCX 5245 kb)
10482_2018_1177_MOESM2_ESM.txt (1 kb)
Supplementary material 2 (TXT 0 kb)
10482_2018_1177_MOESM3_ESM.txt (1 kb)
Supplementary material 3 (TXT 1 kb)
10482_2018_1177_MOESM4_ESM.txt (1 kb)
Supplementary material 4 (TXT 0 kb)
10482_2018_1177_MOESM5_ESM.txt (1 kb)
Supplementary material 5 (TXT 0 kb)
10482_2018_1177_MOESM6_ESM.txt (0 kb)
Supplementary material 6 (TXT 0 kb)

References

  1. Berdy J (1995) Are actinomycetes exhausted as a source of secondary metabolites? Biotechnologia 1995:13–34Google Scholar
  2. Bérdy J (2005) Bioactive microbial metabolites, a personal view. J Antibiot (Tokyo) 58:1–26CrossRefGoogle Scholar
  3. Collins MD (1985) Isoprenoid quinone analyses in bacterial classification and identification. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic, London, pp 267–284Google Scholar
  4. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142CrossRefGoogle Scholar
  5. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefGoogle Scholar
  6. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evol Int J Org Evol 39:783–791CrossRefGoogle Scholar
  7. Fiedler HP, Bruntner C, Bull AT, Ward AC, Goodfellow M, Potterat O, Puder C, Mihm G (2005) Marine actinomycetes as a source of novel secondary metabolites. Antonie Van Leeuwenhoek 87:37–42CrossRefGoogle Scholar
  8. Gao RX, Liu CX, Zhao JW, Jia FY, Yu C, Yang LY, Wang XJ, Xiang WS (2014) Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie Van Leeuwenhoek 105:307–315CrossRefGoogle Scholar
  9. Gordon RE, Barnett DA, Handerhan JE, Pang C (1974) Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63CrossRefGoogle Scholar
  10. Guan XJ, Liu CX, Zhao JW, Fang BZ, Zhang YJ, Li LJ, Jin PJ, Zhao JW, Xiang WS (2015) Streptomyces maoxianensis sp. nov., a novel actinomycete isolated from soil in Maoxian, China. Antonie Van Leeuwenhoek 107:1119–1126CrossRefGoogle Scholar
  11. Guo Y, Zheng W, Rong X, Huang Y (2008) A multilocus phylogeny of the Streptomyces griseus 16S rRNA gene clade: use of multilocus sequence analysis for streptomycete systematics. Int J Syst Evol Microbiol 58:149–159CrossRefGoogle Scholar
  12. Hatano K, Nishii T, Kasai H (2003) Taxonomic re-evaluation of whorl-forming Streptomyces (formerly Streptoverticillium) species by using phenotypes, DNA–DNA hybridization and sequences of gyrB, and proposal of Streptomyces luteireticuli (ex Katoh and Arai 1957) corrig., sp. nov., nom. rev. Int J Syst Evol Microbiol 53:1519–1529CrossRefGoogle Scholar
  13. Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrometric determination of DNA hybridisation from renaturation rates. Syst Appl Microbiol 4:184–192CrossRefGoogle Scholar
  14. Jia FY, Liu CX, Zhao JW, Zhao JW, Liu QF, Zhang J, Gao RX, Xiang WS (2013) Wangellaharbinensis gen. nov., sp. nov., a new member of the family Micromonosporaceae. Antonie Van Leeuwenhoek 103:399–408CrossRefGoogle Scholar
  15. Jones KL (1949) Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–145PubMedPubMedCentralGoogle Scholar
  16. Kelly KL (1964) Inter-society color council: National Bureau of standards color name charts illustrated with centroid colors. US Government Printing Office, WashingtonGoogle Scholar
  17. Kim SB, Brown R, Oldfield C, Gilbert SC, Iliarionov S, Goodfellow M (2000) Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinomycete. Int J Syst Evol Microbiol 50:2031–2036CrossRefGoogle Scholar
  18. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721CrossRefGoogle Scholar
  19. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  20. Labeda DP, Goodfellow M, Brown R, Ward AC, Lanoot B et al (2012) Phylogenetic study of the species within the family Streptomycetaceae. Antonie Van Leeuwenhoek 101:73–104CrossRefGoogle Scholar
  21. Labeda DP, Dunlap CA, Rong XY, Huang Y, Doroghazi JR, Ju KS, Metcalf WW (2017) Phylogenetic relationships in the family Streptomycetaceae using multi-locus sequence analysis. Antonie Van Leeuwenhoek 110:563–583CrossRefGoogle Scholar
  22. Lechevalier HA, Lechevalier MP (1970a) A critical evaluation of the genera of aerobic actinomycetes. In: Prauser H (ed) The actinomycetes. Gustav Fischer, Jena, pp 393–405Google Scholar
  23. Lechevalier MP, Lechevalier HA (1970b) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443CrossRefGoogle Scholar
  24. Lechevalier MP, Lechevalier HA (1980) The chemotaxonomy of actinomycetes. In: Dietz A, Thayer DW (eds) Actinomycete taxonomy special publication, vol 6. Society of Industrial Microbiology, Arlington, pp 227–291Google Scholar
  25. Lechevalier MP, De Bièvre C, Lechevalier HA (1977) Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260CrossRefGoogle Scholar
  26. Mandel M, Marmur J (1968) Use of ultraviolet absorbance temperature profle for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206CrossRefGoogle Scholar
  27. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM, Brooks P, Seviou RJ (2000) A simple HPLC method for analyzing diaminopimelic acid diastereomers in cell walls of Grampositive bacteria. Lett Appl Microbiol 30:178–182CrossRefGoogle Scholar
  28. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal K, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinines and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  29. Piao CY, Zheng WW, Li Y, Liu CX, Jin LY, Song W, Yan K, Wang XJ, Xiang WS (2017) Two new species of the genus Streptomyces: Streptomyces camponoti sp. nov. and Streptomyces cuticulae sp. nov. isolated from the cuticle of Camponotus japonicus Mayr. Arch Microbiol 199(7):963–970CrossRefGoogle Scholar
  30. Rong X, Guo Y, Huang Y (2009) Proposal to reclassify the Streptomyces albidoflavus clade on the basis of multilocus sequence analysis and DNA–DNA hybridization, and taxonomic elucidation of Streptomyces griseus subsp. solvifaciens. Syst Appl Microbiol 32:314–322CrossRefGoogle Scholar
  31. Rosselló-Móra R, Trujillo ME, Sutcliffe IC (2017) Introducing a digital protologue: a timely move towards a database-driven systematics of archaea and bacteria. Antonie Van Leeuwenhoek 110:455–456CrossRefGoogle Scholar
  32. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  33. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  34. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654Google Scholar
  35. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.06. Mol Biol Evol 30:2725–2729CrossRefGoogle Scholar
  36. Waksman SA (1961) The actinomycetes, volume 2, classification, identification and descriptions of genera and species. Williams and Wilkins, BaltimoreGoogle Scholar
  37. Waksman SA (1967) The actinomycetes. A summary of current knowledge. Ronald Press, New YorkGoogle Scholar
  38. Waksman SA, Henrici AT (1943) The nomenclature and classification of the actinomycetes. J Bacteriol 46:337–341PubMedPubMedCentralGoogle Scholar
  39. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE (1987) International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  40. Wu C, Lu X, Qin M, Wang Y, Ruan J (1989) Analysis of menaquinone compound in microbial cells by HPLC. Microbiology [English translation of Microbiology (Beijing)] 16:176–178Google Scholar
  41. Xiang WS, Liu CX, Wang XJ, Du J, Xi LJ, Huang Y (2011) Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fg tree (Ficusreligiosa). Int J Syst Evol Microbiol 61:1165–1169CrossRefGoogle Scholar
  42. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ, Chen HH, Xu LH, Jiang CL (2005) Naxibacteralkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55:1149–1153CrossRefGoogle Scholar
  43. Yokota A, Tamura T, Hasegawa T, Huang LH (1993) Catenuloplanes japonicus gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 43:805–812CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Dongmei Li
    • 1
  • Liyuan Han
    • 1
  • Junwei Zhao
    • 1
  • Hanxun Ju
    • 1
  • Shanwen Jiang
    • 1
  • Xiaowei Guo
    • 1
  • Xiangjing Wang
    • 1
  • Wensheng Xiang
    • 1
    • 2
  1. 1.Key Laboratory of Agriculture Biological Functional Gene of Heilongjiang Provincial Education CommitteeNortheast Agricultural UniversityHarbinPeople’s Republic of China
  2. 2.State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China

Personalised recommendations