Antonie van Leeuwenhoek

, Volume 112, Issue 3, pp 425–434 | Cite as

Marinobacter profundi sp. nov., a slightly halophilic bacterium isolated from a deep-sea sediment sample of the New Britain Trench

  • Junwei CaoEmail author
  • Ping Liu
  • Renju Liu
  • Hainan Su
  • Yuli Wei
  • Rulong Liu
  • Jiasong FangEmail author
Original Paper


A piezotolerant, cold-adapted, slightly halophilic bacterium, designated strain PWS21T, was isolated from a deep-sea sediment sample collected from the New Britain Trench. Cells were observed to be Gram-stain negative, rod-shaped, oxidase- and catalase-positive. Growth of the strain was observed at 4–45 °C (optimum 37 °C), at pH 5.0–9.0 (optimum 7.0) and in 0.5–20% (w/v) NaCl (optimum 3–4%). The optimum pressure for growth was 0.1 MPa (megapascal) with tolerance up to 70 MPa. 16S rRNA gene sequence analysis showed that strain PWS21T is closely related to Marinobacter guineae M3BT (98.4%) and Marinobacter lipolyticus SM19T (98.2%). Multilocus sequence analysis (MLSA) based on sequences of housekeeping genes gyrB, recA, atpD, rpoB and rpoD indicates that strain PWS21T represents a distinct evolutionary lineage within the genus Marinobacter. Furthermore, strain PWS21T showed low ANI and diDDH values to the closely related species. The principal fatty acids were identified as C12:0, C12:0 3-OH, C16:1ω9c, C16:0 and C18:1ω9c. Ubiquinone-9 was identified as the major respiratory quinone. The polar lipids were identified as phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), aminophospholipid (APL), two unidentified lipids and an unidentified phospholipid (PL). The G + C content of the genomic DNA was determined to be 60.3 mol%. On the basis of phenotypic, chemotaxonomic and molecular data, we conclude that strain PWS21T represents a novel species of the genus Marinobacter, for which the name Marinobacter profundi sp. nov. is proposed (type strain PWS21T = KCTC 52990T = MCCC 1K03345T).


Halophilic Marinobacter profundi New Britain Trench Piezotolerant Polyphasic taxonomy 



Marine Culture Collection of China


Korean Collection for Type Cultures


National Center for Biotechnology Information


The digital DNA–DNA hybridization


The average nucleotide identity



This work was supported by National Key R&D Program of China (Grant No. 2018YFC0310600) and by the National Natural Science Foundation of China (41773069, 41706146, 91328208, 41373071, and 41673085). The authors are grateful to all crews and on-board scientists of the M/V Zhangjian for taking the sediment samples in the New Britain Trench in September 2016.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10482_2018_1176_MOESM1_ESM.docx (2.5 mb)
Supplementary material 1 (DOCX 2541 kb)


  1. Auch AF, Klenk HP, Göker M (2010a) Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2:142–148CrossRefGoogle Scholar
  2. Auch AF, von Jan M, Klenk HP, Göker M (2010b) Digital DNA–DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2:117–134CrossRefGoogle Scholar
  3. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman J, Smith JA, Struhl K (2002) Short protocols in molecular biology: a compendium of methods from current protocols in molecular biology. Wiley, New YorkGoogle Scholar
  4. Cao J, Gayet N, Zeng X, Shao Z, Jebbar M, Alain K (2016) Pseudodesulfovibrio indicus gen. nov., sp. nov., a piezophilic sulfate-reducing bacterium from the Indian Ocean and reclassification of four species of the genus Desulfovibrio. Int J Syst Evol Microbiol 66:3904–3911CrossRefGoogle Scholar
  5. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu XW, De Meyer S, Trujillo ME (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466CrossRefGoogle Scholar
  6. Cui Z, Gao W, Xu G, Luan X, Li Q, Yin X, Huang D, Zheng L (2016) Marinobacter aromaticivorans sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from sea sediment. Int J Syst Evol Microbiol 66:353–359CrossRefGoogle Scholar
  7. Dong X, Cai M (2001) Determinative manual for routine bacteriology. Scientific Press, Beijing (English translation) Google Scholar
  8. Fang J, Uhle M, Billmark K, Bartlett DH, Kato C (2006) Fractionation of carbon isotopes in biosynthesis of fatty acids by a piezophilic bacterium Moritella japonica strain DSK1. Geochim Cosmochim Acta 70:1753–1760CrossRefGoogle Scholar
  9. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefGoogle Scholar
  10. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand JC (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576CrossRefGoogle Scholar
  11. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91CrossRefGoogle Scholar
  12. Gu J, Cai H, Yu SL, Qu R, Yin B, Guo YF, Zhao JY, Wu XL (2007) Marinobacter gudaonensis sp. nov., isolated from an oil-polluted saline soil in a Chinese oilfield. Int J Syst Evol Microbiol 57:250–254CrossRefGoogle Scholar
  13. Guo B, Gu J, Ye YG, Tang YQ, Kida K, Wu XL (2007) Marinobacter segnicrescens sp. nov., a moderate halophile isolated from benthic sediment of the South China Sea. Int J Syst Evol Microbiol 57:1970–1974CrossRefGoogle Scholar
  14. Han JR, Ling SK, Yu WN, Chen GJ, Du ZJ (2017) Marinobacter salexigens sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 67:4595–4600CrossRefGoogle Scholar
  15. Huo YY, Wang CS, Yang JY, Wu M, Xu XW (2008) Marinobacter mobilis sp. nov. and Marinobacter zhejiangensis sp. nov., halophilic bacteria isolated from the East China Sea. Int J Syst Evol Microbiol 58:2885–2889CrossRefGoogle Scholar
  16. Kaeppel EC, Gardes A, Seebah S, Grossart HP, Ullrich MS (2012) Marinobacter adhaerens sp. nov., isolated from marine aggregates formed with the diatom Thalassiosira weissflogii. Int J Syst Evol Microbiol 62:124–128CrossRefGoogle Scholar
  17. Kato C, Sato T, Horikoshi K (1995) Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodivers Conserv 4:1–9CrossRefGoogle Scholar
  18. Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351CrossRefGoogle Scholar
  19. Kim JO, Lee HJ, Han SI, Whang KS (2017) Marinobacter halotolerans sp. nov., a halophilic bacterium isolated from a saltern crystallizing pond. Int J Syst Evol Microbiol 67:460–465CrossRefGoogle Scholar
  20. Lai Q, Cao J, Yuan J, Li F, Shao Z (2014) Celeribacter indicus sp. nov. a polycyclic aromatic hydrocarbon-degrading bacterium from deep-sea sediment and reclassification of Huaishuia halophila as Celeribacter halophilus comb. nov. Int J Syst Evol Microbiol 64:4160–4167CrossRefGoogle Scholar
  21. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, Tang J, Wu G, Zhang H, Shi Y, Liu Y, Yu C, Wang B, Lu Y, Han C, Cheung DW, Yiu SM, Peng S, Xiaoqian Z, Liu G, Liao X, Li Y, Yang H, Wang J, Lam TW, Wang J (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1:18CrossRefGoogle Scholar
  22. Martin S, Marquez MC, Sanchez-Porro C, Mellado E, Arahal DR, Ventosa A (2003) Marinobacter lipolyticus sp. nov., a novel moderate halophile with lipolytic activity. Int J Syst Evol Microbiol 53:1383–1387CrossRefGoogle Scholar
  23. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60CrossRefGoogle Scholar
  24. Montes MJ, Bozal N, Mercade E (2008) Marinobacter guineae sp. nov., a novel moderately halophilic bacterium from an Antarctic environment. Int J Syst Evol Microbiol 58:1346–1349CrossRefGoogle Scholar
  25. Ng HJ, Lopez-Perez M, Webb HK, Gomez D, Sawabe T, Ryan J, Vyssotski M, Bizet C, Malherbe F, Mikhailov VV, Crawford RJ, Ivanova EP (2014) Marinobacter salarius sp. nov. and Marinobacter similis sp. nov., isolated from sea water. PLoS ONE 9:e106514CrossRefGoogle Scholar
  26. Papke RT, de la Haba RR, Infante-Dominguez C, Perez D, Sanchez-Porro C, Lapierre P, Ventosa A (2013) Draft genome sequence of the moderately halophilic bacterium Marinobacter lipolyticus strain SM19. Genome Announc 1:e00379-13CrossRefGoogle Scholar
  27. Rani S, Koh HW, Kim H, Rhee SK, Park SJ (2017) Marinobacter salinus sp. nov., a moderately halophilic bacterium isolated from a tidal flat environment. Int J Syst Evol Microbiol 67:205–211CrossRefGoogle Scholar
  28. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131CrossRefGoogle Scholar
  29. Roh SW, Quan ZX, Nam YD, Chang HW, Kim KH, Rhee SK, Oh HM, Jeon CO, Yoon JH, Bae JW (2008) Marinobacter goseongensis sp. nov., from seawater. Int J Syst Evol Microbiol 58:2866–2870CrossRefGoogle Scholar
  30. Rosselló-Móra R, Trujillo ME, Sutcliffe IC (2017) Introducing a digital protologue: a timely move towards a database-driven systematics of archaea and bacteria. Antonie Van Leeuwenhoek 110:455–456CrossRefGoogle Scholar
  31. Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9:945–967Google Scholar
  32. Rzhetsky A, Nei M (1993) Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 10:1073–1095Google Scholar
  33. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  34. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI, NewarkGoogle Scholar
  35. Shivaji S, Gupta P, Chaturvedi P, Suresh K, Delille D (2005) Marinobacter maritimus sp. nov., a psychrotolerant strain isolated from sea water off the subantarctic Kerguelen islands. Int J Syst Evol Microbiol 55:1453–1456CrossRefGoogle Scholar
  36. Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152Google Scholar
  37. Su HN, Chen ZH, Liu SB, Qiao LP, Chen XL, He HL, Zhao X, Zhou BC, Zhang YZ (2012) Characterization of bacterial polysaccharide capsules and detection in the presence of deliquescent water by atomic force microscopy. Appl Environ Microbiol 78:3476–3479CrossRefGoogle Scholar
  38. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefGoogle Scholar
  39. Tindall B, Sikorski J, Smibert R, Krieg N (2007) Phenotypic characterization and the principles of comparative systematics. In: Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM, Snyder LR (eds) Methods for general and molecular microbiology, vol 3. ASM Press, Washington DC, pp 330–393Google Scholar
  40. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE, Stackebrandt E, Starr MP, Trüper HG (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  41. Wu YH, Xu L, Zhou P, Wang CS, Oren A, Xu XW (2015) Brevirhabdus pacifica gen. nov., sp. nov., isolated from deep-sea sediment in a hydrothermal vent field. Int J Syst Evol Microbiol 65:3645–3651CrossRefGoogle Scholar
  42. Xu XW, Wu YH, Wang CS, Yang JY, Oren A, Wu M (2008) Marinobacter pelagius sp. nov., a moderately halophilic bacterium. Int J Syst Evol Microbiol 58:637–640CrossRefGoogle Scholar
  43. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine SciencesShanghai Ocean UniversityShanghaiPeople’s Republic of China
  2. 2.National Engineering Research Center for Oceanic FisheriesShanghai Ocean UniversityShanghaiPeople’s Republic of China
  3. 3.Key Laboratory of Marine Genetic ResourcesThe Third Institute of State Oceanic AdministrationXiamenPeople’s Republic of China
  4. 4.State Key Laboratory of Microbial Technology, Marine Biotechnology Research CenterShandong UniversityJinanPeople’s Republic of China
  5. 5.Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoPeople’s Republic of China
  6. 6.Department of Natural SciencesHawaii Pacific UniversityHonoluluUSA

Personalised recommendations