Advertisement

Actinorhizal trees and shrubs from Africa: distribution, conservation and uses

  • Ana I. Ribeiro-Barros
  • Sílvia Catarino
  • Isabel Moura
  • José C. Ramalho
  • Maria M. Romeiras
  • Faten Ghodhbane-Gtari
Review
  • 21 Downloads

Abstract

Actinorhizal plants are a group of perennial dicotyledonous angiosperms, comprised of more than 200 species, most of which can establish root-nodule symbiosis with the nitrogen fixing actinobacteria of the genus Frankia. They are key providers of fundamental goods and services and can give a major contribution to mitigate the combined effects of climate changes, human population growth and loss of biodiversity. This aspect is particularly relevant for the developing economies of many African countries, which are highly exposed to climate and anthropogenic disturbances. In this work we have analyzed the distribution, conservation and uses of actinorhizal species native to or introduced in Africa. A total of 42 taxa distributed over six botanical families (Betulaceae, Casuarinaceae, Myricaceae, Elaeagnaceae, Rhamnaceae and Coriariaceae) were identified. The vast majority is able to thrive under a range of diverse environments and has multiple ecological and economic potential. More than half of the identified species belong to the genus Morella (Myricaceae), most of them native to Middle, Eastern and Southern Africa. Although the information about the conservation status and uses of Morella spp. is largely incomplete, the available data is indicative of their potential in e.g. forestry and agroforestry, food and medicine. Therefore, efforts should be made to upgrade actinorhizal research in Africa towards the sustainable use of biodiversity at the service of local (bio)economies.

Keywords

Actinorhizal plants Africa Conservation Distribution Ecosystem goods and services 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Authors contribution

AIR-B and MMR conceived the idea. SC and IM performed data retrieval and prepared the database. AIR-B, JCR, MMR, and FG-G analyzed data. AIR-B wrote the paper and all the other authors revised the MS thoroughly.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

This work was supported by national funds from Fundação para a Ciência e a Tecnologia through the research units UID/AGR/04129/2013 (LEAF) and UID/GEO/04035/2013 (GeoBioTec).

References

  1. Aher AN, Pal SC, Patil UK, Yadav SK (2006) Evaluation of anthelmintic activity of Casuarina equisetifolia Frost (Casuarinaceae). Planta Indica 2:35–37Google Scholar
  2. Ahmad A, Khan A, Kumar P, Bhatt RP, Manzoor N (2011) Antifungal activity of Coriaria nepalensis essential oil by disrupting ergosterol biosynthesis and membrane integrity against Candida. Yeast 28:611–617CrossRefGoogle Scholar
  3. Alapetite GP (1979) Flore de la Tunisie. Edition du Ministère de l’enseignement supérieur et de la recherche scientifique et le Ministère de l’agriculture. République TunisienneGoogle Scholar
  4. Al-Snafi A (2015) The pharmacological importance of Casuarina equisetifolia-an overview. Int J Pharmacol Screen Methods 5:4–9Google Scholar
  5. Ashafa T (2013) Medicinal potential of Morella serata (Lam.) Killick (Myricaceae) root extracts: biological and pharmacological activities. BMC Complement Altern Med 13:163CrossRefGoogle Scholar
  6. Batista-Santos P, Duro N, Rodrigues AP, Semedo JN, Alves P, da Costa M, Graça I, Pais IP, Scotti-Campos P, Lidon FC, Leitão AE, Pawlowski K, Ribeiro-Barros AI, Ramalho JC (2015) Is salt stress tolerance in Casuarina glauca Sieb. exSpreng. associated with its nitrogen-fixing root-nodule symbiosis? An analysis at the photosynthetic level. Plant Physiol Biochem 96:97–109CrossRefGoogle Scholar
  7. Bello MO, Yekee TA, Aneke EO (2015) Nutraceutical constituents of Casuarina equisetifolia leaves and fruits. IJCEBS 3:140–144Google Scholar
  8. Benson DR, Dawson JO (2007) Recent advances in the biogeography and genecology of symbiotic Frankia and its host plants. Physiol Plant 130:318–330CrossRefGoogle Scholar
  9. Bosch CH (2009) Alnus acuminata Kunth. In: Lemmens RHMJ, Louppe D, Oteng-Amoako AA (eds). PROTA (Plant Resources of Tropical Africa/Ressources végétales de l’Afriquetropicale), Wageningen. https://uses.plantnet-project.org/en/Alnus_acuminata_(PROTA. Accessed 2 June 2018
  10. Cardon D, Pinto A (2007) Le redoul, herbe des tanneur set des teinturiers. Collecte, commercialization et utilisations d’une plante sauvage dans l’espace méridional (xiiie-xve siècles). Médiévales 53:51–64CrossRefGoogle Scholar
  11. Chauhan VS, Misra AK (2002) Development of molecular markers for screening of Alnus nepalensis (D. Don) genotypes for the nitrogenase activity of actinorhizal root nodules. Mol Genet Genomics 267:303–312CrossRefGoogle Scholar
  12. Cheek M (2004) Morella arborea. The IUCN red list of threatened species 2004: e.T45897A11018861. http://dx.doi.org/10.2305/IUCN.UK.2004.RLTS.T45897A11018861.en. Accessed 3 June 2018
  13. Chen L, Feng P, Li Y, Zhou D (2013) Influences of “spasmolytic powder” on pgp expression of Coriaria Lactone-kindling drug-resistant epileptic rat model. J Mol Neurosci 51:1–8CrossRefGoogle Scholar
  14. Cheng MA, Freitas FJ (2011) Therapeutic possibilities of Coriaria myrtifolia L. in high dilutions. Int J High Dilution Res 10:211–214Google Scholar
  15. Christaki E (2012) Hippophae rhamnoides L. (Sea Buckthorn): a potential source of nutraceuticals. Food Public Health 2:69–72CrossRefGoogle Scholar
  16. Constanza R, Groot R, Braat K, Kubiszewskia I, Fioramonti L, Sutton P, Farber S, Grasso M (2017) Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst Serv 28:1–16CrossRefGoogle Scholar
  17. CSSA (2011) Position statement on crop adaptation to climate change. Crop Science Society of America. https://www.crops.org/files/science-policy/cssa-crop-adaptation-position-statement.pdf. Accessed 2 June 2018
  18. Dahija S, Čakar J, Vidic D, Maksimović M, Parić A (2014) Total phenolic and flavonoid contents, antioxidant and antimicrobial activities of Alnus glutinosa (L.) Gaertn., Alnus incana (L.) Moench and Alnus viridis (Chaix) DC.extracts. Nat Prod Res 28:2317–2320CrossRefGoogle Scholar
  19. De Haro L, Pommier P, Tichadou L, Hayek-Lanthois M, Arditti J (2005) Poisoning by Coriaria myrtifolia Linnaeus: a new case report and review of the literature. Toxicon 46:600–603CrossRefGoogle Scholar
  20. Diagne N, Diouf D, Svistoonoff S, Kane A, Noba K, Franche C, Bogusz D, Duponnois R (2013) Casuarina in Africa: distribution, role and importance of arbuscular mycorrhizal, ectomycorrhizal fungi and Frankia on plant development. J Environ Manag 128:204–209CrossRefGoogle Scholar
  21. Diem HG, Dommergues YR (1990) Current and potential uses and mangement of Casuarinaceae in the tropics and subtropics. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorrhizal plants. Academic Press, San Diego, pp 316–342Google Scholar
  22. Duro N, Batista-Santos P, da Costa M, Maia R, Castro IV, Ramos M, Ramalho JC, Pawlowski K, Máguas C, Ribeiro-Barros AI (2016) The impact of salinity on the symbiosis between Casuarina glauca Sieb. exSpreng. and N2-fixing Frankia bacteria based on the analysis of Nitrogen and Carbon metabolism. Plant Soil 398:327–337CrossRefGoogle Scholar
  23. El-Lakany MH (1983) A review of breeding drought resistant Casuarina for shelterbelt establishment in arid regions with special reference to Egypt. For Ecol Manag 6:129–137CrossRefGoogle Scholar
  24. FAO (2011)Save and grow. A policymaker’s guide to the sustainable intensification of smallholder crop production. http://www.fao.org/ag/save-and-grow/en/index.html. Accessed 3 June 2018
  25. FAO (2015) FAO and the 17 sustainable development goals. http://www.fao.org/3/a-i4997e.pdf. Accessed 3 June 2018
  26. FAO (2017) Strategic work of FAO to increase the resilience of livelihoods. http://www.fao.org/3/a-i6463e.pdf. Accessed 3 June 2018
  27. Goyal AK, Mishra T, Bhattacharya M, Kar P, Sen A (2013) Evaluation of phytochemical constituents and antioxidant activity of selected actinorhizal fruits growing in the forests of Northeast India. J Biosci 38:797–803CrossRefGoogle Scholar
  28. Gtari M, Dawson JO (2011) An overview of actinorhizal plants in Africa. Funct Plant Biol 38:653–661CrossRefGoogle Scholar
  29. Hafsé M, Farah A, Mouktadir JE, Fikri-Benbrahim K (2017) Antioxidant and anti-inflammatory activities evaluation of Coriaria myrtifolia from the North of Morocco. Int Food Res J 24:498–502Google Scholar
  30. Hamidpour R, Hamidpour S, Hamidpour M, Shahlari M, Sohraby M, Shahlari N, Hamidpour R (2017) Russian olive (Elaeagnus angustifolia L.): from a variety of traditional medicinal applications to its novel roles as active antioxidant, anti-inflammatory, anti-mutagenic and analgesic agent. J Tradit Complement Med 7:24–29CrossRefGoogle Scholar
  31. IUCN (2018) The IUCN red list of threatened species. Version 2017-3. http://www.iucnredlist.org Accessed 3 June 2018
  32. Jøker D (2000) Alnus nepalensis D. Don. Danida Forest Seed Centre—Seed Leaflet 8. https://sl.ku.dk/rapporter/seed-leaflets/filer/alnus-nepalensis-8.pdf. Accessed 10 Oct 2018
  33. Joyce DC (2007) Evaluation of fresh red bayberry (Myrica rubra) fruit acceptance. New Zeal J Crop HortSci 35:125–128CrossRefGoogle Scholar
  34. Kanayama K, Kato K, Stobdan T, Galitsyn GG, Kochetov AV, Kanahama K (2012) Research progress on the medicinal and nutritional properties of sea buckthorn (Hippophae rhamnoides)—a review. J Hortic Sci Biotechnol 87:203–210CrossRefGoogle Scholar
  35. Kar P, Dey P, Misra AK, Chaudhuri TK, Sen A (2016) Phytometabolomic fingerprinting of selected actinorhizal fruits popularly consumed in North-East India. Symbiosis 70:159–168CrossRefGoogle Scholar
  36. Killick DJB (1969) The South African species of Myrica. Bothalia 10(1):5–17Google Scholar
  37. Kohls SJ, Baker DD, van Kessel C, Dawson JO (2003) An assessment of soil enrichment by actinorhizal N2 fixation using δ15N values in a chronosequence of deglaciation at Glacier Bay, Alaska. Plant Soil 254:11–17CrossRefGoogle Scholar
  38. Kose LS, Moteetee A, VanVuuren S (2015) Ethnobotanical survey of medicinal plants used in the Maseru district of Lesotho. J Ethnopharmacol 170:184–200CrossRefGoogle Scholar
  39. Larsen L, Joyce NI, Sansom CE, Cooney JM, Jensen DJ, Perry NB (2015) Sweet poisons: honeys contaminated with glycosides of the neurotoxin tutin. J Nat Prod 78:1363–1369CrossRefGoogle Scholar
  40. Larson EC, Pond CD, Rai PP, Matainaho TK, Piskaut P, Franklin MR, Barrows LR (2016) Traditional preparations and methanol extracts of medicinal plants from Papua New Guinea exhibit similar cytochrome P450 inhibition. Evid-Based Compl Alt Med 7869710Google Scholar
  41. Long C (2005) Swaziland’s flora—siSwati names and uses. http://www.sntc.org.sz/backup/flora/chrislong.asp. Accessed 9 June 2018
  42. Lötter M, Burrows JE, Victor JE (2009) Morella microbracteata (Weim.) Verdc. & Polhill. National Assessment: Red List of South African Plants version 2017.1. http://redlist.sanbi.org/. Accessed 3 June 2018
  43. Mahajan S, Tuteja N (2012) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158CrossRefGoogle Scholar
  44. Middha SK, Goyal AK, Faizan SA, Sanghamitra N, Basistha BC, Usha T (2013) In silico—based combinatorial pharmacophore modelling and docking studies of GSK-3β and GK inhibitors of Hippophae. J Biosci 38:805–814CrossRefGoogle Scholar
  45. Middha SK, Usha T, Babu D, Mishra AK, Lokesh P, Goyal AK (2016) Evaluation of antioxidative, analgesic and anti-inflammatory activities of methanolic extract of Myricanagi leaves—an animal model approach. Symbiosis 70:179–184CrossRefGoogle Scholar
  46. Misra AK (2013) Editorial. J Biosci 38:6675–6676CrossRefGoogle Scholar
  47. Mølgaard P, Holler JG, Asar B, Liberna I, Rosenbæk LB, Jebjerg CP, Jørgensen L, Lauritzen J, Guzman A, Adsersen A, Simonsen HT (2011) Antimicrobial evaluation of Huilliche plant medicine used to treat wounds. J Ethnopharmacol 138:219–227CrossRefGoogle Scholar
  48. Monash University (2010) Aboriginal plants in the grounds of Monash University—a guide. 2010. https://www.monash.edu/__data/assets/pdf_file/0004/542119/Guide-to-the-Aboriginal-Garden-Clayton-Campus.pdf. Accessed 28 June 2018
  49. Narayanaswamy R, Ismail IS (2015) Cosmetic potential of Southeast Asian herbs: an overview. Phytochem Rev 14:419–428CrossRefGoogle Scholar
  50. Neamsuvana O, Sengnona N, Seemaphrika N, Chouychooa M, Rungrata R, Bunrasria S (2015) Survey of medicinal plants around upper Songkhla lake, Thailand. Afr J Tradit Complement Altern Med 12:133–143CrossRefGoogle Scholar
  51. Notten A (2005) South African National Biodiversity Institute. http://pza.sanbi.org/morella-cordifolia. Accessed 9 June 2018
  52. Okuda T, Yoshida T, Ashida M, Yazaki K (1983) Tannins of Casuarina and Stachyurus species. Structures of pendunculagin, casuarictin, strictinin, casuarinin, casuariin, and stachyurin. J Chem Soc Perkin Trans 1:765–1772Google Scholar
  53. Paul A, Das J, Da S, Samadder A, Khuda-Bukhsh A (2013) Anticancer potential of myricanone, a major bioactive component of Myrica cerifera: novel signaling cascade for accomplishing apoptosis. J Acupunct Meridian Stud 6:188–198CrossRefGoogle Scholar
  54. PFAF (2018) Plants for a future. https://www.pfaf.org/user/Default.aspx. Accessed 28 June 2018
  55. Rao OU, Eswaraiah MC, Prabhakar MC (2018) Evaluation of anthelmintic activity of aqueous extract of Casuarina equisetifolia inflorescence (IA) and pollen grains (Seeds: SA) in Indian adult earthworm. Asian J Res Chem 11:287–292CrossRefGoogle Scholar
  56. Ren X, He T, Chang Y, Zhao Y, Chen X, Bai S, Wang L, Shen M, She G (2017) The genus Alnus, a comprehensive outline of its chemical constituents and biological activities. Molecules 22:1383CrossRefGoogle Scholar
  57. Ribeiro A, Berry AM, Pawlowski K (2011) Actinorhizal plants. Funct Plant Biol 38:3–5Google Scholar
  58. Ribeiro-Barros AI, da Costa M, Duro N, Graça I, Batista-Santos P, Jorge TF, Lidon FC, Pawlowski K, António C, Ramalho JC (2016) An integrated approach to understand the mechanisms underlying salt stress tolerance in Casuarina glauca and its relation with nitrogen-fixing FrankiaThr. Symbiosis 70:111–116CrossRefGoogle Scholar
  59. Sabiu A, Ashafab AOT (2017) Morellaserrata (Lam.) Killick stabilizes biomembrane and rejuvenates sexual competence in male Wistar rats. J Ethnopharmacol 205:8–15CrossRefGoogle Scholar
  60. Saboonchian F, Jamei R, Sarghein SH (2014) Phenolic and flavonoid content of Elaeagnusangustifolia L. (leaf and flower). Avicenna J Phytomed 4:231–238PubMedPubMedCentralGoogle Scholar
  61. Sahan Y, Dundar AN, Aydin E, Kilci A, Dulger D, KaplanFB Gocmen D, Celik G (2013) Characteristics of cookies supplemented with oleaster (Elaeagnus angustifolia L.) flour: physicochemical, sensorial and textural properties. J Agr Sci 5:160–168Google Scholar
  62. Sati SC, Sati N, Sati OP (2011) Bioactive constituents and medicinal importance of genus Alnus. Pharmacog Rev 5:174–183CrossRefGoogle Scholar
  63. Schlage C, Heinrich M, Mabula C, Mahunnah R (2000) Medicinal plants of the Washambaa (Tanzania): documentation and ethnopharmacological evaluation. Plant Biol 2:83–92CrossRefGoogle Scholar
  64. Silva J, Seca AML, Barreto MC, Pinto DCGA (2015) Recent breakthroughs in the antioxidant and anti-inflammatory effects of Morella and Myrica species. Int J Mol Sci 16:17160–17180CrossRefGoogle Scholar
  65. Singh VK, Siddiqui MK, Aminuddin (2007) Folk medicinal plants used for the treatment of bronchial asthma in India. Acta Hortic 756:63–72CrossRefGoogle Scholar
  66. Spínola V, Llorent-Martínez EJ, Gouveia S, Castilho PC (2014) Myrica faya: a new source of antioxidant phytochemicals. J Agric Food Chem 62:9722–9735CrossRefGoogle Scholar
  67. Surminski J (1980) Technical properties of alderwood and possibilities of its utilization. In: Bialobok S (ed) Olsze (Alnus Mill) Monogr, vol 8. Popularn., Warsaw, pp 325–341Google Scholar
  68. Swamy V, Ninge KN, Sudhakar R (2013) Antimicrobial activity of Casuarina equisetifolia. Int J Innov Pharm Dev 1:49–57CrossRefGoogle Scholar
  69. Uy M, Garcia K (2015) Evaluation of the antioxidant properties of the leaf extracts of Philippine medicinal plants Casuarina equisetifolia Linn, Cyperus brevifolius (Rottb) Hassk, Drymoglossum piloselloides Linn, Ixora chinensis Lam, and Piper abbreviatum Opiz. Adv Agric Bot 7:71–79Google Scholar
  70. Uzun A, Celik B, Karadeniz T, Yilmaz KU, Altintaş C (2015) Assessment of fruit characteristics and genetic variation among naturally growing wild fruit Elaeagnus angustifolia accessions. Turk J Agric For 39:286–294CrossRefGoogle Scholar
  71. Wang JS, Stewart JR, Khan SA, Dawson JO (2010) Elevated amino sugar nitrogen concentrations in soils: a potential method for assessing N fertility enhancement by actinorhizal plants. Symbiosis 50:71–76CrossRefGoogle Scholar
  72. Watkins OC, Joyce NI, Gould N, Perry NB (2018) Glycosides of the neurotoxin tutin in toxic honeys are from Coriaria arborea phloem sap, not insect metabolism. J Nat Prod 81:1116–1120CrossRefGoogle Scholar
  73. Yanthan M, Misra AK (2013) Molecular approach to the classification of medicinally important actinorhizal genus Myrica. Indian J Biotech 12:133–136Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ana I. Ribeiro-Barros
    • 1
    • 2
  • Sílvia Catarino
    • 1
  • Isabel Moura
    • 1
  • José C. Ramalho
    • 1
    • 2
  • Maria M. Romeiras
    • 1
  • Faten Ghodhbane-Gtari
    • 3
    • 4
  1. 1.Plant-Environment Interactions and Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA)Universidade de LisboaLisbonPortugal
  2. 2.GeoBioTec, Faculdade de Ciências e Tecnologia (FCT)Universidade NOVA de Lisboa (UNL)Monte de CaparicaPortugal
  3. 3.Laboratoire Microorganismes et Biomolécules Actives, Faculté des Sciences de TunisUniversité Tunis El ManarTunisTunisia
  4. 4.ISBSTUniversité La ManoubaManoubaTunisia

Personalised recommendations