Advertisement

Antonie van Leeuwenhoek

, Volume 112, Issue 2, pp 253–262 | Cite as

Micromonospora azadirachtae sp. nov., isolated from roots of Azadirachta indica A. Juss. var. siamensis Valeton

  • Nattakorn Kuncharoen
  • Takuji Kudo
  • Moriya Ohkuma
  • Somboon TanasupawatEmail author
Original Paper

Abstract

A Gram-stain positive actinomycete, strain AZ1-19T, isolated from roots of Azadirachta indica A. Juss. var. siamensis Valeton, collected from Chachoengsao province, Thailand, was characterised taxonomically by using a polyphasic approach. Strain AZ1-19T was found to have characteristics consistent with those of members of the genus Micromonospora. The cell wall peptidoglycan of the strain was found to contain meso-diaminopimelic acid. The predominant phospholipids were identified as diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylinositol. The characteristic whole-cell sugars were identified as glucose, xylose, galactose and mannose. The major menaquinones were found to be MK-9(H6), MK-10(H6) and MK-10(H8), and the major cellular fatty acids were identified as iso-C16:0, iso-C15:0, anteiso-C15:0 and anteiso-C17:0. Comparative analysis of 16S rRNA gene sequences revealed that strain AZ1-19T is closely related to Micromonospora costi CS1-12T (98.75% similarity), Micromonospora avicenniae 268506T (98.75%), Micromonospora haikouensis 232617T (98.68%) and Micromonospora siamensis TT2-4T (98.61%), whilst the corresponding phylogenetic analysis based on partial gyrase subunit B (gyrB) gene sequences indicated that strain AZ1-19T forms a clade with M. avicenniae 268506T with a high bootstrap value. The DNA G + C content was determined to be 69.8 mol%. Moreover, a combination of DNA–DNA relatedness values and some phenotypic and chemotaxonomic properties indicated that the strain could be distinguished from closely related species. Therefore, it is considered that strain AZ1-19T represents a novel Micromonospora species for which the name Micromonospora azadirachtae sp. nov. is proposed. The type strain is AZ1-19T (= KCTC 39941T = NBRC 112784T = JCM 32148T = TISTR 2559T).

Keywords

Micromonospora azadirachtae Micromonosporaceae Azadirachta indica Endophytic actinomycetes Plant root 

Notes

Acknowledgements

We would like to thank Dr A. Matsumoto and Prof Dr Y. Takahashi, Department of Drug Discovery, Kitasato University for the isoprenoid quinone analysis by LC-MS, and appreciate Assoc Prof Dr C. Thawai, Department of Biology, Faculty of Science, King’s Mongkut Institute of Technology Ladkrabang, for providing M. costi CS1-12T. We also thank the 2015 Royal Golden Jubilee Ph. D. Programme scholarship to N. K. for financial support under the Thailand Research Fund.

Author’s contribution

We declare that the present study was performed by the authors named in this article. N. Kuncharoen, S. Tanasupawat designed the study; N. Kuncharoen, S. Tanasupawat, and T. Kudo performed experiments on isolation, identification, analysis, and interpretation; M. Ohkuma gave technical support and conceptual advice. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflicts of interest

The authors declare that there are no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants and/or animals performed by any of the authors. The formal consent is not required in this study.

Supplementary material

10482_2018_1152_MOESM1_ESM.pdf (821 kb)
Supplementary material 1 (PDF 820 kb)

References

  1. Carro L, Pukall R, Spröer C, Kroppenstedt RM, Trujillo ME (2012) Micromonospora cremea sp. nov. and Micromonospora zamorensis sp. nov., isolated from the rhizosphere of Pisum sativum. Int J Syst Evol Microbiol 62:2971–2977CrossRefGoogle Scholar
  2. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230CrossRefGoogle Scholar
  3. Coombs JT, Franco CMM (2003) Visualization of an endophytic Streptomyces species in wheat seed. Appl Environ Microbiol 69:4260–4262CrossRefGoogle Scholar
  4. Ezaki T, Hashimoto Y, Yabuuchi E (1989) Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229CrossRefGoogle Scholar
  5. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefGoogle Scholar
  6. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  7. Fitch WM (1971) Toward defining the course of evolution: minimum change for specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  8. Garcia LC, Martínez-Molina E, Trujillo ME (2010) Micromonospora pisi sp. nov., isolated from root nodules of Pisum sativum. Int J Syst Evol Microbiol 60:331–337CrossRefGoogle Scholar
  9. Genilloud O (2012) Genus I Micromonospora Ørskov 1923 156AL. In: Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 5. Springer, New York, pp 1039–1057Google Scholar
  10. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98 NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  11. Hasegawa S, Meguro A, Shimizu M, Nishimura T, Kunoh H (2006) Endophytic actinomycetes and their interactions with host plants. Actinomycetologica 20:72–81CrossRefGoogle Scholar
  12. Igarashi Y, Trujillo ME, Martínez-Molina E et al (2007) Antitumor anthraquinones from an endophytic actinomycete Micromonospora lupini sp. nov. Bioorg Med Chem Lett 17:3702–3705CrossRefGoogle Scholar
  13. Igarashi Y, Yanase S, Suigamoto K et al (2011a) Lupinacidin C, an inhibitor of tumour cell invasion from Micromonospora lupini. J Nat Prod 74:862–865CrossRefGoogle Scholar
  14. Igarashi Y, Ogura H, Furihata K et al (2011b) Maklamicin, an antibacterial polyketide from an endophytic Micromonospora sp. J Nat Prod 74:670–674CrossRefGoogle Scholar
  15. Jacobson E, Grauville WC, Fogs CE (1958) Colour harmony manual 4th. Container Corporation of America, ChicagoGoogle Scholar
  16. Kawamoto I (1989) Genus Micromonospora Ørskov 1923, 147AL. In: Williams ST, Sharpe ME, Holt JG (eds) Bergey’s Manual of Systematic Bacteriology, vol 4. Williams & Wilkins, Baltimore, pp 2442–2450Google Scholar
  17. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefGoogle Scholar
  18. Kirby BM, Meyers PR (2010) Micromonospora tulbaghiae sp. nov., isolated from the leaves of wild garlic, Tulbaghia violacea. Int J Syst Evol Microbiol 60:1328–1333CrossRefGoogle Scholar
  19. Kittiwongwattana C, Thanaboripat D, Laosinwattana C, Koohakan P, Parinthawong N, Thawai C (2015) Micromonospora oryzae sp. nov., isolated from roots of upland rice. Int J Syst Evol Microbiol 65:3818–3823CrossRefGoogle Scholar
  20. Kroppenstedt RM (1985) Fatty acid and menaquinone analysis of actinomycetes and related organisms. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics, vol 20. Academic Press, New York, pp 173–199Google Scholar
  21. Kudo T, Matsushima K, Itoh T, Sasaki J, Suzuki K (1998) Description of four new species of the genus Kineosporia: Kineosporia succinea sp. nov., Kineosporia rhizophila sp. nov., Kineosporia mikuniensis sp. nov. and Kineosporia rhamnosa sp. nov., isolated from plant samples, and amended description of the genus Kineosporia. Int J Syst Bacteriol 48:1245–1255CrossRefGoogle Scholar
  22. Kumar S, Stecher G, Tamura K (2016) MEGA 7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874CrossRefGoogle Scholar
  23. Kuncharoen N, Pittayakhajonwut P, Tanasupawat S (2018) Micromonospora globbae sp. nov., an endophytic actinomycete isolated from roots of Globba winitii C. H. Wright. Int J Syst Evol Microbiol 68:1073–1077CrossRefGoogle Scholar
  24. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–148Google Scholar
  25. Lechevalier MP, De Bièvre C, Lechevalier HA (1977) Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260CrossRefGoogle Scholar
  26. Li L, Mao YJ, Xie QY, Deng Z, Hong K (2013) Micromonospora avicenniae sp. nov., isolated from a root of Avicennia marina. Antonie Van Leeuwenhoek 103:1089–1096CrossRefGoogle Scholar
  27. Mikami H, Ishida Y (1983) Post-column fluorometric detection of reducing sugar in high-performance liquid chromatography using arginine. Bunseki Kagaku 32:E207–E210CrossRefGoogle Scholar
  28. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  29. Okazaki T (2003) Studies on actinomycetes isolated from plant leaves. In: Kurtboke I, Hayakawa M, Terekhova L, Okazaki T (eds) Selective isolation of actinomycetes. National Library of Australia, Queensland, pp 102–122Google Scholar
  30. Ørskov J (1923) Investigations into the morphology of the ray fungi. Levin and Munksgaard, CopenhagenGoogle Scholar
  31. Phongsopitanun P, Kudo T, Mori M, Shiomi K, Pittayakhajonwut P, Suwanborirux K, Tanasupawat S (2015) Micromonospora fluostatini sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 65:4417–4423CrossRefGoogle Scholar
  32. Qin S, Li J, Chen H-H, Zhao G-Z, Zhu W-Y, Jiang C-L, Xu L-H, Li W-J (2009) Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xinshuangbanna, China. Appl Environ Microbiol 75:6176–6186CrossRefGoogle Scholar
  33. Rosselló-Móra R, Trujillo ME, Sutcliffe IC (2017) Introducing a digital protologue: a timely move towards a database-driven systematics of archaea and bacteria. Antonie Van Leeuwenhoek 110:455–456CrossRefGoogle Scholar
  34. Saitou N, Miura K (1963) Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629CrossRefGoogle Scholar
  35. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  36. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. Technical Note 101. MIDI, NewarkGoogle Scholar
  37. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340CrossRefGoogle Scholar
  38. Staneck JL, Robert GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231Google Scholar
  39. Supong K, Suriyachadkun C, Pittayakhajonwut P, Suwanborirux K, Thawai C (2013) Micromonospora spongicola sp. nov., an actinomycete isolated from a marine sponge in the gulf of Thailand. J Antibiot 66:505–509CrossRefGoogle Scholar
  40. Suriyachadkun C, Chunhametha S, Thawai C, Tamura T, Potacharoen W, Kirtikara K, Sanglier J (2009) Planotetraspora thailandica sp. nov., isolated from soil in Thailand. Int J Syst Evol Microbiol 59:992–997CrossRefGoogle Scholar
  41. Tamaoka J (1994) Determination of DNA base composition. In: Goodfellow M, O’Donnell AG (eds) Chemical methods in prokaryotic systematics. Wiley, Chichester, pp 463–470Google Scholar
  42. Tamaoka J, Komagata K (1984) Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128CrossRefGoogle Scholar
  43. Tamaoka J, Katayama-Fujimura Y, Kuraishi H (1983) Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54:31–36CrossRefGoogle Scholar
  44. Tanasupawat S, Jongrungruangchok S, Kudo T (2010) Micromonospora marina sp. nov., isolated from sea sand. Int J Syst Evol Microbiol 60:648–652CrossRefGoogle Scholar
  45. Thawai C (2015) Micromonospora costi sp. nov., isolated from a leaf of Costus speciosus. Int J Syst Evol Microbiol 65:1456–1461CrossRefGoogle Scholar
  46. Thawai C, Tanasupawat S, Itoh T, Suwanborirux K, Kudo T (2005) Micromonospora siamensis sp. nov., isolated from Thai peat swamp forest. J Gen Appl Microbiol 51:229–234CrossRefGoogle Scholar
  47. Tomiyasu I (1982) Mycolic acid composition and thermally adaptative changes in Nocardia asteroids. J Bacteriol 151:828–837Google Scholar
  48. Trujillo ME, Kroppenstedt RM, Schumann P, Carro L, Martínez-Molina E (2006) Micromonospora coriariae sp. nov., isolated from root nodules of Coriaria myrtifolia. Int J Syst Evol Microbiol 56:2381–2385CrossRefGoogle Scholar
  49. Uchida K, Aida K (1984) An improved method for the glycolate test for simple identification of the acyl type of bacterial cell walls. J Gen Appl Microbiol 30:131–134CrossRefGoogle Scholar
  50. Wang C, Xu XX, Qu Z, Wang HL, Lin HP, Xie QY, Ruan JS, Hong K (2011) Micromonospora rhizosphaerae sp. nov., isolated from mangrove rhizosphere soil. Int J Syst Evol Microbiol 61:320–324CrossRefGoogle Scholar
  51. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI, Moore LH, Moore WEC, Murray RGE et al (1987) International committee on systematic bacteriology. Report of the ad hoc committee on the reconciliation of approaches to bacterial systematic. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar
  52. Xie QY, Qu Z, Lin HP, Li L, Hong K (2012) Micromonospora haikouensis sp. nov., isolated from mangrove soil. Antonie Van Leeuwenhoek 101:649–655CrossRefGoogle Scholar
  53. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBiocloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Nattakorn Kuncharoen
    • 1
  • Takuji Kudo
    • 2
  • Moriya Ohkuma
    • 2
  • Somboon Tanasupawat
    • 1
    Email author
  1. 1.Department of Biochemistry and Microbiology, Faculty of Pharmaceutical SciencesChulalongkorn UniversityBangkokThailand
  2. 2.Japan Collection of Microorganisms, RIKEN BioResource CenterTsukubaJapan

Personalised recommendations