Advertisement

Antonie van Leeuwenhoek

, Volume 112, Issue 2, pp 203–209 | Cite as

Georgenia alba sp. nov., a novel halotolerant actinobacterium isolated from a desert sand sample

  • Lan-Yu Li
  • Zi-Wen Yang
  • Mipeshwaree Devi Asem
  • Nimaichand SalamEmail author
  • Min Xiao
  • Dalal Hussien M. Alkhalifah
  • Wael N. Hozzein
  • Guo-Xing Nie
  • Wen-Jun LiEmail author
Original Paper
  • 104 Downloads

Abstract

Strain SYSU D8008T was isolated from a desert sand sample collected from Saudi Arabia. The strain was observed to be Gram-stain positive, non-motile and aerobic. It can grow at 15–37 °C, pH 6.0–10.0 and can tolerant up to 7% (w/v) NaCl. Pairwise comparison of the 16S rRNA gene sequence indicated that strain SYSU D8008T shares high sequence similarities with Georgenia deserti SYSU D8004T (96.8%) and Georgenia halophila YIM 93316T (96.8%). Menaquinone MK-8(H4) was detected as the respiratory isoprenologue. The polar lipid profile of strain SYSU D8008T was found to consist of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, two phosphatidylinositol mannosides, an unidentified glycolipid and an unidentified phospholipid. Strain SYSU D8008T was found to contain anteiso-C15:0 and iso-C15:0 as the predominant fatty acids. Galactose, glucose and rhamnose were detected as the whole cell sugars. Based on the phenotypic, genotypic and phylogenetic characteristics, strain SYSU D8008T can be differentiated from other closely related members of the genus Georgenia. The strain SYSU D8008T, therefore, is concluded to represent a novel species of the genus Georgenia, for which the name Georgenia alba sp. nov. is proposed. The type strain is SYSU D8008T (= CGMCC 1.15800T = KCTC 39988T).

Keywords

Georgenia alba sp. nov. Saudi Arabia Desert Polyphasic taxonomy 

Notes

Acknowledgements

This research was supported by the Xinjiang Uygur Autonomous Region regional coordinated innovation project (Shanghai Cooperation Organization Science and Technology Partnership Program) (Grant No. 2017E01031), the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University, through the Research Groups Program (Grant No. RGP-1438-0004), National Natural Science Foundation of China (Grant No. 31850410475) and China Biodiversity Observation Networks (SinoBON). WJL is supported by project funded by Guangdong Province Higher Vocational Colleges and Schools Pearl River Scholar Funded Scheme (2014).

Authors’ contribution

N.S. and W.J.L. conceived the study. L.Y.L., Z.W.Y., M.D.A. and M.X. performed research. D.H.M.A., W.N.H and N.S. analyzed data. Z.W.Y., N.S. and W.J.L. wrote the paper. All authors approved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors

Supplementary material

10482_2018_1145_MOESM1_ESM.docx (4.3 mb)
Supplementary material 1 (DOCX 4426 kb)

References

  1. Altenburger P, Kämpfer P, Schumann P, Vybiral D, Lubitz W, Busse HJ (2002) Georgenia muralis gen. nov., sp. nov., a novel actinobacterium isolated from a medieval wall painting. Int J Syst Evol Microbiol 52:875–881Google Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  3. Buck JD (1982) Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993Google Scholar
  4. Busse HJ, Glaeser SP, Kämpfer (2016) Georgenia. In: Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J, DeVos P, Hedlund B, Dedysh S (eds) Bergey’s manual of systematic of archaeae and bacteria. Wiley Online LibraryGoogle Scholar
  5. Collins MD, Jones D (1980) Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Bacteriol 48:459–470CrossRefGoogle Scholar
  6. Collins MD, Pirouz T, Goodfellow M, Minnikin DE (1977) Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230CrossRefGoogle Scholar
  7. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefGoogle Scholar
  8. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  9. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416CrossRefGoogle Scholar
  10. Gonzalez C, Gutierrez C, Ramirez C (1978) Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24:710–715CrossRefGoogle Scholar
  11. Hamada M, Tamura T, Ishida Y, Suzuki K (2009) Georgenia thermotolerans sp. nov., an actinobacterium isolated from forest soil. Int J Syst Evol Microbiol 59:1875–1879CrossRefGoogle Scholar
  12. Hozzein WN, Yang ZW, Alharbi SA, Alsakkaf WAA, Asem MD, Xiao M, Salam N, Li WJ (2018) Georgenia deserti sp. nov., a halotolerant actinobacterium isolated from a desert sample. Int J Syst Evol Microbiol 68:1135–1139CrossRefGoogle Scholar
  13. Kämpfer P, Arun AB, Busse HJ, Langer S, Young CC, Chen WM, Schumann P, Syed AA, Rekha PD (2010) Georgenia soli sp. nov., isolated from iron-ore-contaminated soil in India. Int J Syst Evol Microbiol 60:1027–1030CrossRefGoogle Scholar
  14. Kimura M (1984) The neutral theory of molecular evolution. Cambridge University Press, CambridgeGoogle Scholar
  15. Kovacs N (1956) Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178:703–704CrossRefGoogle Scholar
  16. Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefGoogle Scholar
  17. Lechevalier MP, Lechevalier HA (1980) The chemotaxonomy of actinomycetes. In: Dietz TDW (ed) Actinomycete Taxonomy Special Publication, vol 6. Society for Industrial Microbiology, Arlington, pp 227–291Google Scholar
  18. Leifson E (1960) Atlas of bacterial flagellation. Academic Press, LondonCrossRefGoogle Scholar
  19. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R, Xu LH, Stackebrandt E, Jiang CL (2007) Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Gerogenia. Int J Syst Evol Microbiol 57:1424–1428CrossRefGoogle Scholar
  20. Liu YH, Guo JW, Salam N, Li L, Zhang YG, Han J, Mohamad OA, Li WJ (2016) Culturable endophytic bacteria associated with medicinal plant Ferula songorica: molecular phylogeny, distribution and screening for industrially important traits. 3. Biotech 6:209.  https://doi.org/10.1007/s13205-016-0522-7 Google Scholar
  21. McFaddin JF (1976) Biochemical tests for identification of medical bacteria. Williams and Wilkins Co, BaltimoreGoogle Scholar
  22. McKerrow J, Vagg S, McKinney T, Seviour EM, Maszenan AM, Brooks P, Seviour RJ (2001) A simple HPLC method for analyzing diaminopimelic acid diastereomers in cell walls of Gram positive bacteria. Lett Appl Microbiol 30:178–182CrossRefGoogle Scholar
  23. Mesbah M, Premachandran U, Whitman WB (1989) Precise measurement of the G + C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39:159–167CrossRefGoogle Scholar
  24. Ming H, Nie GX, Jiang HC, Yu TT, Zhou EM, Feng HG, Tang SK, Li WJ (2012) Paenibacillus frigoriresistens sp. nov., a novel psychrotroph isolated from a peat bog in Heilongjiang, Northern China. Antonie van Leeuwenhoek 102:297–305CrossRefGoogle Scholar
  25. Minnikin DE, Collins MD, Goodfellow M (1979) Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95CrossRefGoogle Scholar
  26. Nie GX, Ming H, Li S, Zhou EM, Cheng J, Tang X, Feng HG, Tang SK, Li WJ (2012) Amycolatopsis dongchuanensis sp. nov., an actinobacterium isolated from soil. Int J Syst Evol Microbiol 62:2650–2656CrossRefGoogle Scholar
  27. Rosselló-Móra R, Trujillo ME, Sutcliffe IC (2017) Introducing a digital protologue: a timely move towards a database-driven systematics of archaea and bacteria. Antonie Van Leeuwenhoek 110:455–456CrossRefGoogle Scholar
  28. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  29. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:16Google Scholar
  30. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477Google Scholar
  31. Smibert R, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington DC, pp 607–654Google Scholar
  32. Srinivas A, Rahul K, Sasikala C, Subhash Y, Ramaprasad EVV, Ramana CV (2012) Georgenia satyanarayanai sp. nov., an alkaliphilic and thermotolerant amylase-producing actinobacterium isolated from a soda lake. Int J Syst Evol Microbiol 62:2405–2409CrossRefGoogle Scholar
  33. Tamaoka J, Katayama-Fujimura Y, Kuraishi H (1983) Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54:31–36CrossRefGoogle Scholar
  34. Tang SK, Wang Y, Lee JC, Lou K, Park DJ, Kim CJ, Li WJ (2010) Georgenia halophila sp. nov., a halophilic actinobacterium isolated from a salt lake. Int J Syst Evol Microbiol 60:1317–1321CrossRefGoogle Scholar
  35. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysistools. Nucleic Acids Res 25:4876–4882CrossRefGoogle Scholar
  36. Wang S, Xu X, Wang L, Jiao K, Zhang G (2015) Georgenia subflava sp. nov., isolated from a deep-sea sediment. Int J Syst Evol Microbiol 65:4146–4150CrossRefGoogle Scholar
  37. Woo SG, Cui Y, Kang MS, Jin L, Kim KK, Lee ST, Lee M, Park J (2012) Georgenia daeguensis sp. nov., isolated from 4-chlorophenol enrichment culture. Int J Syst Evol Microbiol 62:1703–1709CrossRefGoogle Scholar
  38. Yang ZW, Salam N, Hua ZS, Liu BB, Han MX, Fang BZ, Wang D, Xiao M, Hozzein WN, Li WJ (2017) Siccirubricoccus deserti gen. nov., sp. nov., a proteobacterium isolated from a desert sample. Int J Syst Evol Microbiol 67:4862–4867CrossRefGoogle Scholar
  39. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1618CrossRefGoogle Scholar
  40. You ZQ, Li J, Qin S, Tian XP, Wang FZ, Zhang S (2013) Georgenia sediminis sp. nov., a moderately thermophilic actinobacterium isolated from sediment. Int J Syst Evol Microbiol 63:4243–4247CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.College of Life SciencesHenan Normal UniversityXinxiangPeople’s Republic of China
  2. 2.State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat-Sen UniversityGuangzhouPeople’s Republic of China
  3. 3.Biology Department, Faculty of SciencePrincess Nourah Bint Abdulrahman UniversityRiyadhKingdom of Saudi Arabia
  4. 4.Bioproducts Research Chair, Zoology Department, College of ScienceKing Saud UniversityRiyadhKingdom of Saudi Arabia
  5. 5.Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and GeographyChinese Academy of SciencesÜrümqiPeople’s Republic of China

Personalised recommendations