Advertisement

Antonie van Leeuwenhoek

, Volume 112, Issue 1, pp 57–65 | Cite as

Frankia torreyi sp. nov., the first actinobacterium of the genus Frankia Brunchorst 1886, 174AL isolated in axenic culture

  • Imen Nouioui
  • Faten Ghodhbane-Gtari
  • Marlen Jando
  • Louis S. Tisa
  • Hans-Peter Klenk
  • Maher GtariEmail author
Original Paper

Abstract

Strain CpI1T was, in 1978, the first isolate of the genus Frankia to be obtained from Comptonia peregrina root nodules. In this study, a polyphasic approach was performed to identify the taxonomic position of strain CpI1T among the members of the genus Frankia. The strain contains meso-diaminopimelic acid as the diagnostic diamino acid and galactose, glucose, mannose, rhamnose, ribose and xylose as cell wall sugars. The polar lipids were found to consist of phosphatidylinositol, diphosphatidylglycerol, glycophospholipids, phosphatidylglycerol, an aminophospholipid and unidentified phospholipids and lipids. The predominant menaquinone was identified as MK-9 (H8), while the major fatty acid are iso-C16:0 and C17:1ω 8c. The 16S rRNA gene sequence identity varies from 97.4 to 99.6% with the type strains of currently described Frankia species. Phylogenetic analyses based on 16S rRNA gene sequences and multi-locus sequence analysis (MLSA) using atp1, ftsZ, dnaK, gyrA and secA gene sequences showed that strain CpI1T is closely related to Frankia alni ACN14aT. The genome size of strain CpI1T is 7.6 Mb with a digital DNA G+C content of 72.4%. Digital DNA:DNA hybridization (values between strain CpI1T and its close phylogenetic relative F. alni ACN14aT was 44.1%, well below the threshold of 70% for distinguishing between bacterial genomic species. Based on the phenotypic, phylogenetic and genomic data, strain CpI1T (= DSM44263T = CECT9035T) warrants classification as the type strain of a novel species, for which the name Frankia torreyi sp. nov. is proposed.

Keywords

Frankia Symbiosis Chemotaxonomy Phenotyping 

Notes

Acknowledgements

This work was supported by Tunisian Ministry of Higher Education and Scientific Research. We are grateful to Gabriele Pötter at DSMZ for helping in chemotaxonomic analyses.

Author’s contribution

MG conceived and designed the experiments, IN performed Biolog and chemotaxonomic analysis, MJ helped in chemotaxonomic analysis, IN, FGG, LST, HPK and MG analyzed the data. IN and MG wrote the paper: All authors read and approved the final version of the manuscript.

Conflicts of interest

All the authors declare that they have no conflict of interest.

Supplementary material

10482_2018_1131_MOESM1_ESM.pdf (554 kb)
Supplementary material 1 (PDF 554 kb)

References

  1. Baker DD (1987) Relationships among pure cultured strains of Frankia based on host specificity. Physiol Plant 70:245–248CrossRefGoogle Scholar
  2. Baker D, Torrey JG (1979) The isolation and cultivation of actinomycetes root nodule endophytes. In: Gordon JC, Wheeler CT, Perry DA (eds) Symbiotic nitrogen fixation in the management of temperate forests. Oregon State University Press, Corvallis, pp 38–56Google Scholar
  3. Becking JH (1970) Frankiaceae fam. nov. (Actinomycetales) with one new combination and six new species of the genus Frankia Brunchorst 1886, 174. Int J Syst Bacteriol 20:201–220CrossRefGoogle Scholar
  4. Benson DR, Silvester WB (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319Google Scholar
  5. Brunchorst JH (1886) Über einige Wurzelanschwellungen, besonders diejenigen von Alnus und den Elaegnaceen. Unters Bot Inst Tübingen 2:151–177Google Scholar
  6. Callaham C, Deltredici P, Torrey JG (1978) Isolation and cultivation in vitro of the actinomycete causing root nodulation in comptonia. Science 199:899–902CrossRefGoogle Scholar
  7. Chaia EE, Wall L, Huss-Danell K (2010) Life in soil by actinorhizal root nodule endophyte Frankia: a review. Symbiosis 51:201–226CrossRefGoogle Scholar
  8. Ghodhbane-Gtari F, Nouioui I, Chair M, Boudabous A, Gtari M (2010) 16S-23S rRNA intergenic spacer region variability in the genus Frankia. Microb Ecol 60:487–495CrossRefGoogle Scholar
  9. Gtari M, Ghodhbane-Gtari F, Nouioui I, Ktari A, Hezbri K, Mimouni W et al (2015) Cultivating the uncultured:growing the recalcitrant cluster-2 Frankia strains. Sci Rep 5:13112CrossRefGoogle Scholar
  10. Lalonde M (1979) Immunological and ultrastructural demonstration of nodulation of the European Alnus glutinosa (L.) Gaertn. host plant by an actinomycetal isolate from the North American Comptonia peregrina (L.) Coult. root nodule. Bot Gaz 140:S35–S43CrossRefGoogle Scholar
  11. Lechevalier MP, Lechevalier HA (1979) The taxonomic position of the actinomycetic endophytes. In: Gordon JC, Wheeler CT, Perry DA (eds) Symbiotic nitrogen fixation in the management of temperate forests. Forest Research Laboratory, Oregon State University, Corvallis, OR, pp 111–122Google Scholar
  12. Lechevalier MP, Lechevalier HA (1990) Systematics, isolation and culture of Frankia. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and Actinorhizal plants. Academic Press, San Diego, pp 35–60CrossRefGoogle Scholar
  13. Lechevalier MP, Ruan JS (1984) Physiology and chemical diversity of Frankia spp. isolated from nodules of Comptonia peregrina (L.) Coult. andCeanothus americanus L. Plant Soil 78:15–22CrossRefGoogle Scholar
  14. Lopez MF, Whaling CS, Torrey JG (1983) The polar lipids and free sugars of Frankia in culture. Canadian J Bot 61(11):2834–2842CrossRefGoogle Scholar
  15. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013a) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60CrossRefGoogle Scholar
  16. Meier-Kolthoff JP, Göker M, Spröer C, Klenk H-P (2013b) When should a DDH experiment be mandatory in microbial taxonomy? Arch Microbiol 195:413–418CrossRefGoogle Scholar
  17. Murry MA, Fontaine MS, Torrey JG (1984) Growth kinetics and nitrogenase induction in Frankia sp. HFP ArI3 grown in batch culture. Plant Soil 78:61–78CrossRefGoogle Scholar
  18. Newcomb W, Callaham D, Torrey JG, Peterson RL (1979) Morphogenesis and fine structure of the actinomycetous endophyte of nitrogen-fixing root nodules of Comptonia peregrina. Bot Gaz 140:S22–S34CrossRefGoogle Scholar
  19. Normand P, Orso S, Cournoyer B, Jeannin P, Chapelon C, Dawson J et al (1996) Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae. Int J Syst Bacteriol 46:1–9CrossRefGoogle Scholar
  20. Normand P, Lapierre P, Tisa LS, Gogarten JP, Alloisio N, Bagnarol E, Bassi CA, Berry AM, Bickhart DM et al (2007) Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 17:7–15CrossRefGoogle Scholar
  21. Normand P, Nguyen TV, Battenberg K, Berry AM, vanden Heuvel B, Fernandez MP et al (2017) Proposal of ‘Candidatus Frankia californiensis’, the uncultured symbiont in nitrogen-fixing root nodules of a phylogenetically broad group of hosts endemic to western North America. Int J Syst Evol Microbiol 67:3706–3715CrossRefGoogle Scholar
  22. Normand N, Nouioui I, Pujic P, Fournier P, Dubost A, Klenk H-P et al (2018) Frankia canadensis sp. nov., isolated from root nodules of Alnus incana subspecies rugosa growing in Canada. Int J Evol Syst Microbiol (Accepted)Google Scholar
  23. Nouioui I, Ghodhbane-Gtari F, Beauchemin NJ, Tisa LS, Gtari M (2011) Phylogeny of members of the Frankia genus based on gyrB, nifH and glnII sequences. Antonie Van Leeuwenhoek 100:579–587CrossRefGoogle Scholar
  24. Nouioui I, Ghodhbane-Gtari F, Montero-Calasanz MD, Göker M, Meier-Kolthoff JP, Schumann P et al (2016) Proposal of a type strain for Frankia alni (Woronin 1866) Von Tubeuf 1895, emended description of Frankia alni, and recognition of Frankia casuarinae sp. nov. and Frankia elaeagni sp. nov. Int J Syst Evol Microbiol 66:5201–5210CrossRefGoogle Scholar
  25. Nouioui I, Ghodhbane-Gtari F, Rohde M, Klenk H-P, Gtari M (2017a) Frankia coriariae sp. nov., an infective and effective microsymbiont isolated from Coriaria japonica. Int J Syst Evol Microbiol 67:1266–1270CrossRefGoogle Scholar
  26. Nouioui I, Montero-Calasanz MDC, Ghodhbane-Gtari F, Rohde M, Tisa LS, Klenk H-P et al (2017b) Frankia discariae sp. nov.: an infective and effective microsymbiont isolated from the root nodule of Discaria trinervis. Arch Microbiol 199:641–647CrossRefGoogle Scholar
  27. Nouioui I, Ghodhbane-Gtari F, Montero-Calasanz MDC, Rohde M, Tisa LS, Gtari M et al (2017c) Frankia inefficax sp. nov., an actinobacterial endophyte inducing ineffective, non nitrogen-fixing, root nodules on its actinorhizal host plants. Antonie Van Leeuwenhoek 110:313–320CrossRefGoogle Scholar
  28. Nouioui I, Gueddou A, Ghodhbane-Gtari F, Rhode M, Gtari M, Klenk H-P (2017d) Frankia asymbiotica sp. nov., a non infective actinobacterium isolated from Morella californica root nodule. Int J Syst Evol Microbiol 67:4897–4901CrossRefGoogle Scholar
  29. Nouioui I, Ghodhbane-Gtari F, Rhode M, Sangal V, Klenk H-P, Gtari M (2018a) Frankia irregularis sp. nov., an actinobacterium unable to nodulate its original host, Casuarina equisetifolia, but effectively nodulate members of the actinorhizal Rhamnales. Int J Syst Evol Microbiol.  https://doi.org/10.1099/ijsem.0.002914 Google Scholar
  30. Nouioui I, Ghodhbane-Gtari F, Klenk H-P, Gtari M (2018b) Frankia saprophytica sp. nov. an atypical non-infective (Nod–) and non-nitrogen fixing (Fix–) actinobacterium isolated from Coriaria nepalensis root nodules. Int J Syst Evol Microbiol 68:1090–1095CrossRefGoogle Scholar
  31. Oshone R, Hurst SG, Abebe-Akele F, Simpson S, Morris K, Thomas WK, Tisa LS (2016) Permanent draft genome sequences for two variants of Frankia sp. strain CpI1, the first Frankia strain isolated from root nodules of Comptonia peregrina. Genome Announc 4(1):e01588-15CrossRefGoogle Scholar
  32. Persson T, Benson DR, Normand P, vanden Heuvel B, Pujic P, Chertkov O et al (2011) Genome sequence of “Candidatus Frankia datiscae” Dg1, the uncultured microsymbiont from nitrogen-fixing root nodules of the dicot Datisca glomerata. J Bacteriol 193:7017–7018CrossRefGoogle Scholar
  33. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. PNAS 106:19126–19131CrossRefGoogle Scholar
  34. Rossello-Mora R, Trujillo ME, Sutcliffe IC (2017) Introducing a digital protologue: a timely move towards a database-driven systematic of archaea and bacteria. Antonie Van Leeuwenhoek 110:455–456CrossRefGoogle Scholar
  35. Schwencke J, Carú M (2001) Advances in actinorhizal symbiosis: host plant-Frankia interactions, biology, and applications in arid land reclamation. Arid Land Res Manag 15:285–327CrossRefGoogle Scholar
  36. Sen A, Daubin V, Abrouk D, Gifford I, Berry AM, Normand P (2014) Phylogeny of the class Actinobacteria revisited in the light of complete genomes, the orders ‘Frankiales’ and Micrococcales should be split into coherent entities. Proposal of Frankiales ord. nov., Geodermatophilales ord. nov., Acidothermales ord. nov. and Nakamurellales ord. nov. Int J Syst Evol Microbiol 64:3821–3832CrossRefGoogle Scholar
  37. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefGoogle Scholar
  38. Tisa LS, Oshone R, Sarkar I, Ktari A, Sen A, Gtari M (2016) Genomic approaches toward understanding the actinorhizal symbiosis: an update on the status of the Frankia genomes. Symbiosis 70:5–16CrossRefGoogle Scholar
  39. Torrey JG (1990) Cross-inoculation groups within Frankia and host-endosymbiont associations. In: Schwintzer CR, Tjepkema JD (eds) The Biology of Frankia and Actinorhizal Plants. Academic Press Inc, New York, pp 83–106CrossRefGoogle Scholar
  40. Tunlid A, Schultz NA, Benson DR, Steele DB, White DC (1989) Differences in fatty acid composition between vegetative cells and N2-fixing vesicles of Frankia sp. strain CpI1. PNAS 86:3399–3403CrossRefGoogle Scholar
  41. Wayne LG, Brenner BD, Colwell RR, Grimont PAD, Kandler O, Krichevsky MI et al (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUK
  2. 2.Laboratoire Microorganismes et Biomolécules ActivesUniversité Tunis El Manar (FST)TunisTunisia
  3. 3.Institut National des Sciences Appliquées et de TechnologieUniversité CarthageTunis CedexTunisia
  4. 4.Leibniz Institute DSMZ – German Collection of Microorganisms and Cell CulturesBrunswickGermany
  5. 5.Department of Molecular, Cellular, and Biomedical SciencesUniversity of New HampshireDurhamUSA

Personalised recommendations