Antonie van Leeuwenhoek

, Volume 111, Issue 12, pp 2371–2384 | Cite as

Transcriptomic analysis of porcine PBMCs in response to Actinobacillus pleuropneumoniae reveals the dynamic changes of differentially expressed genes related to immuno-inflammatory responses

  • Hexiang Jiang
  • Rining Zhu
  • Hongtao Liu
  • Chuntong Bao
  • Jianfang Liu
  • Abdalla Eltahir
  • Paul R. Langford
  • Diangang Sun
  • Zhonghua Liu
  • Changjiang Sun
  • Jingmin Gu
  • Wenyu Han
  • Xin Feng
  • Liancheng Lei


Actinobacillus pleuropneumoniae is the cause of porcine pleuropneumonia, for which the mortality rate is high. Host peripheral blood is a body site for the immune clearance of pathogens mediated by release of inflammatory factors. However, “out of control” inflammatory factor release can contribute to host death. To further understand the changes in the transcription level of immune-related effectors, samples of peripheral blood mononuclear cells (PBMCs) collected from piglets at different stages of infection (0, 24 and 120 h) were sequenced on an Illumina HiSeq™ 4000 platform. We found 3818 differentially expressed genes (DEGs) in the 24 h-infection group compared to the 0 h-infection group (Pb24-Vs-Pb0). DEGs mainly involved in the Gene ontology and KEGG pathways that included nucleic acid metabolism regulation, cell growth, cell differentiation, and organ morphological maintenance were not significantly enriched (P > 0.05). However, DEGs associated with protein kinase activity, receptor activation, metabolism, local adhesion and immune inflammatory responses were significantly enriched in Pb120-Vs-Pb24 (P < 0.05), as were those related to the T cell receptor signalling pathway, with most being down-regulated compared to the preceding stage (Pb24-Vs-Pb0). In PBMCs there were some changes in glucose metabolism, local adhesion and the immune inflammatory response (Pb120-Vs-Pb0). In addition, up-regulated DEGs, such as IL8, IL1β, and CCL2, and were significantly enriched in immune-inflammatory related pathways compared to the uninfected stage, although they began to decline after 24 h.


A. pleuropneumoniae Porcine pleuropneumonia Transcriptomic PBMC 



Actinobacillus pleuropneumoniae


Peripheral blood mononuclear cells


Bronchoalveolar lavage fluid


Enzyme linked immunosorbent assay


Differentially expressed genes


Quality control


Reads per kb per million reads


Pre-set false discovery rate


Gene Ontology


Kyoto Encyclopedia of Genes and Genomes


Database of Annotation, Visualization, and Integrated Discovery


Porcine alveolar macrophages


Quantitative real time-PCR



This research was supported by a Grant from the National Natural Science Foundation of China (No. 31520103917).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

All authors approved the final version of the manuscript.

Supplementary material

10482_2018_1126_MOESM1_ESM.doc (30 kb)
Supplementary material 1 (DOC 30 kb)
10482_2018_1126_MOESM2_ESM.doc (30 kb)
Supplementary material 2 (DOC 29 kb)
10482_2018_1126_MOESM3_ESM.doc (31 kb)
Supplementary material 3 (DOC 31 kb)
10482_2018_1126_MOESM4_ESM.doc (44 kb)
Supplementary material 4 (DOC 43 kb)
10482_2018_1126_MOESM5_ESM.tif (135 kb)
Fig. S1. Summary of the sequence assembly. After filtering, the percentage of clean data in all samples is more than 80%, indicating that this sequencing machine is stable and has no other operation errors (TIFF 134 kb)
10482_2018_1126_MOESM6_ESM.tif (126 kb)
Fig. S2. The Reads random distribution. On the X-axis, 0–1 represents the relative position of the gene normalized in the 5′ – > 3′ direction, the y-axis represents the number of Reads in the mapping. In the case of no random bias in sequencing, the entire curve should be stable, indicating that reads are evenly distributed in all parts of the gene, and the randomization of this sequencing is qualified (TIFF 126 kb)
10482_2018_1126_MOESM7_ESM.tif (177 kb)
Fig. S3. The summary of all DEGs involved in the immune response and inflammatory response, respectively (TIFF 176 kb)
10482_2018_1126_MOESM8_ESM.tif (130 kb)
Fig. S4. qRT-PCR validation of ten selected genes that were differentially expressed in the transcriptomic data. Data are representative of three independent experiments and error bars areplotted as mean ± SEM. The height of each bar chart represents the mean average of sample-specifi 2 −ΔΔCt values (*P < 0.05, **P < 0.01) (TIFF 130 kb)


  1. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25:25–29CrossRefGoogle Scholar
  2. Auger E, Deslandes V, Ramjeet M, Contreras I, Nash JHE, Harel J, Gottschalk M, Olivier M, Jacques M (2009) Host-pathogen Interactions of Actinobacillus pleuropneumoniae with porcine lung and tracheal epithelial cells. Infect Immun 77:1426–1441CrossRefGoogle Scholar
  3. Baltes N, Tonpitak W, Gerlach G, Hennig-Pauka I, Hoffmann-Moujahid A, Ganter M, Rothkötter H (2001) Actinobacillus pleuropneumoniae iron transport and urease activity: effects on bacterial virulence and host immune response. Infect Immun 69:472–478CrossRefGoogle Scholar
  4. Barreiro O, Yáñez-Mó M, Serrador JM, Montoya MC, Vicente-Manzanares M, Tejedor R, Furthmayr H, Sánchez-Madrid F (2002) Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol 157:1233–1245CrossRefGoogle Scholar
  5. BenitoMartin A, Peinado H (2015) FunRich proteomics software analysis, let the fun begin! Proteomics 15:2555–2556CrossRefGoogle Scholar
  6. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188CrossRefGoogle Scholar
  7. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman W, Pagès F, Trajanoski Z, Galon J (2009) ClueGO: a Cytoscape plug-into decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091–1093CrossRefGoogle Scholar
  8. Brogaard L, Klitgaard K, Heegaard PM, Hansen MS, Jensen TK, Skovgaard K (2015) Concurrent host-pathogen gene expression in the lungs of pigs challenged with Actinobacillus pleuropneumoniae. BMC Genom 16:417CrossRefGoogle Scholar
  9. Bujold AR, MacInnes JI (2016) Attachment of Actinobacillus suis H91-0380 and its isogenic adhesin mutants to extracellular matrix components of the tonsils of the soft palate of swine. Infect Immun 84:2944–2952CrossRefGoogle Scholar
  10. Bystry RS, Aluvihare V, Welch KA, Kallikourdis M, Betz AG (2001) B cells and professional APCs recruit regulatory T cells via CCL4. Nat Immunol 2:1126–1132CrossRefGoogle Scholar
  11. Chen ZW, Chien MS, Chang NY, Chen TH, Wu CM, Huang C, Lee WC, Hsuan SL (2011) Mechanisms underlying Actinobacillus pleuropneumoniae exotoxin ApxI induced expression of IL-1b, IL-8 and TNF-a in porcine alveolar macrophages. Vet Res 42:25CrossRefGoogle Scholar
  12. Chen XR, Xing YP, Li YP, Tong YH, Xu JY (2013) RNA-Seq reveals infection-related gene expression changes in Phytophthora capsici. PLoS ONE 8:e74588CrossRefGoogle Scholar
  13. Contassot E, Beer H, French LE (2012) Interleukin-1, inflammasomes, autoinflammation and the skin. Swiss Med Wkly 142:w13590PubMedGoogle Scholar
  14. Doyle SL, O’Neill LAJ (2006) Toll-like receptors: from the discovery of NFκB to new insights into transcriptional regulations in innate immunity. Biochem Pharmacol 72:1102–1113CrossRefGoogle Scholar
  15. Foell D, Frosch M, Sorg C, Roth J (2004) Phagocyte-specific calcium-binding S100 proteins as clinical laboratory markers of inflammation. Clin Chim Acta 344:37–51CrossRefGoogle Scholar
  16. Gardell JL, Parker DC (2017) CD40L is transferred to antigen-presenting B cells during delivery of T-cell help. Eur J Immunol 47:41–50CrossRefGoogle Scholar
  17. GomezLaguna J, Islas A, Muñoz D, Ruiz Á, Villamil A, Carrasco L, Quezada M (2014) Infection dynamics and acute phase response of an Actinobacillus pleuropneumoniae field isolate of moderate virulence in pigs. Vet Microbiol 173:332–339CrossRefGoogle Scholar
  18. Halli O, Ala-Kurikka E, Wallgren P, Heinonen M (2014) Actinobacillus pleuropneumoniae seroprevalence in farmed wild boars in Finland. Am Assoc Zoo Vet 45:813–818Google Scholar
  19. Harbort CJ, Soeiropereira PV, Von BH, Kaindl AM, Costacarvalho BT (2015) Neutrophil oxidative burst activates ATM to regulate cytokine production and apoptosis. Blood 126:2842–2851CrossRefGoogle Scholar
  20. Hayden M, West A, Ghosh S (2006) NF-kB and the immune response. Oncogene 25:6758–6780CrossRefGoogle Scholar
  21. He M, Xu J, He R, Shen N, Gu X, Peng X, Yang G (2016) Preliminary analysis of Psoroptes ovis transcriptome in different developmental stages. Parasite Vector 9:570CrossRefGoogle Scholar
  22. Hedegaard J, Skovgaard K, Mortensen S, Sørensen P, Jensen TK, Hornshøj H, Bendixen C, Heegaard PM (2007) Molecular characterisation of the early response in pigs to experimental infection with Actinobacillus pleuropneumoniae using cDNA microarrays. Acta Vet Scand 49:11CrossRefGoogle Scholar
  23. Hind CK, Carter MJ, Harris CL, Chan HTC, James S, Cragg MS (2015) Role of the pro-survival molecule Bfl-1 in melanoma. Int J Biochem Cell Biol 59:94–102CrossRefGoogle Scholar
  24. Bowman MH, Wilk J, Heydemann A, Kim G, Rehman J, Lodato JA, Raman J, McNally EM (2010) S100A12 mediates aortic wall remodeling and aorticaneurysm. Circ Res 106:145–154CrossRefGoogle Scholar
  25. Hsu C, Li S, Chang N, Chen Z, Liao J, Chen T, Wang J, Lin J, Hsuan S (2016) Involvement of NF-κB in regulation of Actinobacillus pleuropneumoniae exotoxin ApxI-induced proinflammatory cytokine production in porcine alveolar macrophages. Vet Microbiol 195:128–135CrossRefGoogle Scholar
  26. Huang DW, Sherman BT, Lempicki RA (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57CrossRefGoogle Scholar
  27. Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13CrossRefGoogle Scholar
  28. Huang Y, Yi Z, Jin Y, Huang M, He K (2017) Metatranscriptomics reveals the functions and enzyme profiles of the microbial community in Chinese Nong-flavor liquor starter. Front Microbiol 8:1747CrossRefGoogle Scholar
  29. Karataev GI, Markov AR, Sinyashina LN, Miller GG, Klitsunova NV, Titova IV, Semin EG, Goncharova NI, Pokrovskaya MS, Amelina IP, Amoako K, Smirnov GB (2008) Comparative investigation of the role of the yadA, invA, and psaA genes in the pathogenicity of Yersinia pseudotuberculosis. Mol Genet Microbiol Virol 23:168–177CrossRefGoogle Scholar
  30. Klitgaard K, Friis C, Jensen TK, Angen Y, Boye M (2012) Transcriptional portrait of Actinobacillus pleuropneumoniae during acute disease—potential strategies for survival and persistence in the host. PLoS ONE 7:e35549CrossRefGoogle Scholar
  31. Kosaki A, Hasegawa T, Kimura T, Iida K, Hitomi J, Matsubara H, Mori Y, Okigaki M, Toyoda N, Masaki H, Inoue-Shibata M, Nishikawa M, Iwasaka T (2004) Increased plasma S100A12 (EN-RAGE) levels in patients with type 2 diabetes. J Clin Endocrinol Metab 89:5423–5428CrossRefGoogle Scholar
  32. Laura M, Francesca M, Cristina L, Manuela C, Caterina RM (2016) Th1-Induced CD106 expression mediates leukocytes adhesion on synovial fibroblasts from juvenile idiopathic arthritis Patients. PLoS ONE 11:e154422CrossRefGoogle Scholar
  33. Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967CrossRefGoogle Scholar
  34. Li X, Tang J, Xu J, Zhu M, Cao J (2014) The inflammation related gene S100A12 is positively regulated by C/EBPβ and AP-1 in pigs. Int J Mol Sci 8:13802–13816CrossRefGoogle Scholar
  35. Li P, Xu Z, Sun X, Yin Y, Fan Y, Zhao J, Mao X, Huang J, Yang F, Zhu L (2017) Transcript profiling of the immunological interactions between Actinobacillus pleuropneumoniae serotype 7 and the host by dual RNA-seq. BMC Microbiol 17:193CrossRefGoogle Scholar
  36. Li B, Fang J, Zuo Z, Yin S, He T, Yang M, Deng J, Shen L, Ma X, Yu S, Wang Y (2018) Activation of porcine alveolar macrophages by Actinobacillus pleuropneumoniae lipopolysaccharide via the Toll-Like receptor 4/NF-κB-mediated pathway. Infect Immun 86:e617–e642CrossRefGoogle Scholar
  37. Lin CH, Yu MC, Chiang CC, Bien MY, Chien MH, Chen BC (2013) Thrombin-induced NF-κB activation and IL-8/CXCL8 release is mediated by c-Src-dependent Shc, Raf-1, and ERK pathways in lung epithelial cells. Cell Signal 25:1166–1175CrossRefGoogle Scholar
  38. Liu J, Ma Q, Yang F, Zhu R, Gu J, Sun C, Feng X, Du C, Langford PR, Han W, Yang J, Lei L (2017) B cell cross-epitope of Propionibacterium acnes and Actinobacillus pleuropneumonia selected by phage display library can efficiently protect from Actinobacillus pleuropneumonia infection. Vet Microbiol 205:14–21CrossRefGoogle Scholar
  39. Maurer M, von Stebut E (2004) Macrophage inflammatory protein-1. Int J Biochem Cell Biol 36:1882–1886CrossRefGoogle Scholar
  40. Meriem B, Nadim N, Daniel Y, Suzanne S, Nada A (2016) The interaction of CD154 with the α5β1 integrin inhibits Fas-induced T cell death. PLoS ONE 11:e158987Google Scholar
  41. Miao Y, Shen Y, Xu Y (2017) Effects of inhibitors on the transcriptional profiling of gluconobater oxydans NL71 genes after biooxidation of xylose into cylonate. Front Microbiol 8:716CrossRefGoogle Scholar
  42. Mohammadi H, Mohammadnejad J, Yavari K (2014) human peripheral blood derived hematopoietic stem cell: history, the isolation methods and investigation of different parameters effects on their differentiation to the body cells. Int J Stem Cell Res Transplant 2:59–62Google Scholar
  43. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628CrossRefGoogle Scholar
  44. Pathan M, Keerthikumar S, Ang C, Gangoda L, Quek CYJ, Williamson NA, Mouradov D, Sieber OM, Simpson RJ, Salim A, Bacic A, Hill AF, Stroud DA, Ryan MT, Agbinya JI, Mariadason JM, Burgess AW, Mathivanan S (2015) FunRich: an open access standalone functional enrichment and interaction network analysis tool. Proteomics 15:2597–2601CrossRefGoogle Scholar
  45. Re F, Strominger JL (2002) Monomeric recombinant MD-2 binds Toll-like receptor 4 tightly and confers lipopolysaccharide responsiveness. J Biol Chem 227:23427–23432CrossRefGoogle Scholar
  46. Redford PS, Murray PJ, O’Garra A (2011) The role of IL-10 in immune regulation during M. tuberculosis infection. Mucosal Immunol 4:261–270CrossRefGoogle Scholar
  47. Reed DM, Paschalaki KE, Starke RD, Mohamed NA, Sharp G, Fox B, Eastwood D, Bristow A, Ball C, Vessillier S, Hansel TT, Thorpe SJ, Randi AM, Stebbings R, Mitchell JA (2015) An autologous endothelial cell: peripheral blood mononuclear cell assay that detects cytokine storm responses to biologics. FASEB J 29:2595–2602CrossRefGoogle Scholar
  48. Reiner G, Bertsch N, Hoeltig D, Selke M, Willems H, Gerlach GF, Tuemmler B, Probst I, Herwig R, Drungowski M, Waldmann KH (2014a) Identification of QTL affecting resistance/susceptibility to acute Actinobacillus pleuropneumoniae infection in swine. Mamm Genome 25:180–191CrossRefGoogle Scholar
  49. Reiner G, Dreher F, Drungowski M, Hoeltig D, Bertsch N, Selke M, Willems H, Gerlach GF, Probst I, Tuemmler B, Waldmann K, Herwig R (2014b) Pathway deregulation and expression QTLs in response to Actinobacillus pleuropneumoniae infection in swine. Mamm Genome 25:600–617CrossRefGoogle Scholar
  50. Ren M, Guo Q, Guo L, Lenz M, Qian F, Koenen RR, Xu H, Schilling AB, Weber C, Ye RD, Dinner AR, Tang WJ (2010) Polymerization of MIP-1 chemokine (CCL3 and CCL4) and clearance of MIP-1 by insulin-degrading enzyme. EMBO J 29:3952–3966CrossRefGoogle Scholar
  51. Renard P, Zachary MD, Bougelet C, Mirault ME, Haegeman G, Remacle J, Raes M (1997) Effects of antioxidant enzyme modulations on interleukin-1-induced nuclear factor kappa B activation. Biochem Pharmacol 53:149–160CrossRefGoogle Scholar
  52. Sassu EL, Bossé JT, Tobias TJ, Gottschalk M, Langford PR, Hennig-Pauka I (2017a) Update on Actinobacillus pleuropneumoniae -knowledge, gaps and challenges. Transbound Emerg Dis 65:72–90CrossRefGoogle Scholar
  53. Sassu EL, Ladinig A, Talker SC, Stadler M, Knecht C, Stein H, Frömbling J, Richter B, Spergser J, Ehling-Schulz M, Graage R, Hennig-Pauka I, Gerner W (2017b) Frequency of Th17 cells correlates with the presence of lung lesions in pigs chronically infected with Actinobacillus pleuropneumoniae. Vet Res 48:4CrossRefGoogle Scholar
  54. Schonbeck U, Libby P (2001) The CD40/CD154 receptor/ligand dyad. Cell Mol Life Sci 58:4–43CrossRefGoogle Scholar
  55. Skovgaard K, Mortensen S, Boye M, Poulsen KT, Campbell FM, Eckersall PD, Heegaard PMH (2009) Rapid and widely disseminated acute phase protein response after experimental bacterial infection of pigs. Vet Res 40:23CrossRefGoogle Scholar
  56. Szmitko PE, Wang CH, Weisel RD, de Almeida JR, Anderson TJ, Verma S (2003) New markers of inflammation and endothelial cell activation: part I. Circulation 108:1917–1923CrossRefGoogle Scholar
  57. Thacker EL (2006) Lung inflammatory responses. Vet Res 37:469–486CrossRefGoogle Scholar
  58. Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG (2012) Into the eye of the cytokine storm. Microbiol Mol Biol Rev 76:16–32CrossRefGoogle Scholar
  59. Toma L, Sanda GM, Deleanu M, Stancu CS, Sima AV (2016) Glycated LDL increase VCAM-1 expression and secretion in endothelial cells and promote monocyte adhesion through mechanisms involving endoplasmic reticulum stress. Mol Cell Biochem 417:169–179CrossRefGoogle Scholar
  60. Uliczka F, Kornprobst T, Eitel J, Schneider D, Dersch P (2009) Cell invasion of Yersinia pseudotuberculosis by invasin and YadA requires protein kinase C, phospholipase C-γ1 and Akt kinase. Cell Microbiol 11:1782–1801CrossRefGoogle Scholar
  61. Volkmann ER, Hoffmannvold AM, Chang YL, Jacobs JP, Tillisch K (2017) Systemic sclerosis is associated with specific alterations in gastrointestinal microbiota in two independent cohorts. BMJ Open Gastroenterol 4:e134CrossRefGoogle Scholar
  62. Wallgren P, Persson M (2000) Relationship between the amounts of antibodies to Actinobacillus pleuropneumoniae serotype 2 detected in blood serum and in fluids collected from muscles of pigs. Zoonoses Public Health 47:727–737Google Scholar
  63. Wang X, Luo F, Zhao H (2014) Paraquat-induced reactive oxygen species inhibit neutrophil apoptosis via a p38 MAPK/NF-kB—IL-6/TNF-a positive-feedback circuit. PLoS ONE 9:e93837CrossRefGoogle Scholar
  64. Wang L, Qin W, Zhang J, Bao C, Zhang H, Che Y, Sun C, Gu J, Feng X, Du C, Han W, Richard PL, Lei L (2016) Adh enhances Actinobacillus pleuropneumoniae pathogenicity by binding to OR5M11 and activating p38 which induces apoptosis of PAMs and IL-8 release. Sci Rep 6:24058CrossRefGoogle Scholar
  65. Wu T (2007) The role of vascular cell adhesion molecule-1 in tumor immune evasion. Cancer Res 67:6003–6006CrossRefGoogle Scholar
  66. Yang Z, Yan WX, Cai H, Tedla N, Armishaw C, Di Girolamo N, Wang HW, Hampartzoumian T, Simpson JL, Gibson PG, Hunt J, Hart P, Hughes JM, Perry MA, Alewood PF, Geczy CL (2007) S100A12 provokes mast cell activation: a potential amplification pathway in asthma and innate immunity. J Allergy Clin Immun 119:106–114CrossRefGoogle Scholar
  67. Yu S, Zuo Z, Cui H, Li M, Peng X, Zhu L, Zhang M, Li X, Xu Z, Gan M, Deng J, Fang J, Ma J, Su S, Wang Y, Shen L, Ma X, Ren Z, Wu B, Hu Y (2013) Transcriptionalprofiling of hilar nodes from pigs after experimental infection with Actinobacillus Pleuropneumoniae. Int J Mol Sci 14:23516–23532CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Hexiang Jiang
    • 1
  • Rining Zhu
    • 1
  • Hongtao Liu
    • 1
  • Chuntong Bao
    • 1
  • Jianfang Liu
    • 1
  • Abdalla Eltahir
    • 1
  • Paul R. Langford
    • 2
  • Diangang Sun
    • 1
  • Zhonghua Liu
    • 1
  • Changjiang Sun
    • 1
  • Jingmin Gu
    • 1
  • Wenyu Han
    • 1
  • Xin Feng
    • 1
  • Liancheng Lei
    • 1
  1. 1.College of Veterinary MedicineJilin UniversityChangchunChina
  2. 2.Section of PaediatricsImperial College LondonLondonUK

Personalised recommendations