Jiangella anatolica sp. nov. isolated from coastal lake soil

  • Hilal AyEmail author
  • Imen Nouioui
  • Lorena Carro
  • Hans-Peter Klenk
  • Demet Cetin
  • José M. Igual
  • Nevzat Sahin
  • Kamil Isik
Original Paper


A novel actinobacterial strain, designated GTF31T, was isolated from a coastal soil sample of Gölcük Lake, a crater lake in southwest Anatolia, Turkey. The taxonomic position of the strain was established using a polyphasic approach. Phylogenetic analyses based on 16S rRNA gene sequences and showed that the strain is closely related to Jiangella gansuensis DSM 44835T (99.4%), Jiangella alba DSM 45237T (99.3%) and Jiangella muralis DSM 45357T (99.2%). Optimal growth was observed at 28 °C and pH 7–8. Whole cell hydrolysates were found to contain LL-DAP, glucose, mannose, rhamnose and ribose. The predominant menaquinone was identified as MK-9(H4). The polar lipid profile was found to contain diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, glycophospholipids and unidentified phospholipids. The major fatty acids were identified as anteiso-C15:0, iso-C16:0 and anteiso-C17:0. The G + C content of the type strain was determined to be 72.5% and the size of the draft genome is 7.0 Mb. The calculated digital DDH values between strain GTF31T and the type strains of J. gansuensis, J. alba, J. muralis and Jiangella alkaliphila ranged from 24.4 to 34.4% and ANI values ranged between 81.0 and 87.9%. Based upon the consensus of phenotypic and phylogenetic analyses as well as whole genome comparisons, strain GTF31T (= DSM 100984T = CECT 9378T) is proposed to represent the type strain of a novel species, Jiangella anatolica sp. nov.


Phylogenomic Gölcük Lake Jiangella Polyphasic taxonomy 



HA is grateful for the Scientific and Technological Research Council of Turkey (TÜBİTAK) for the Ph.D. scholarship. IN and LC are grateful for Newcastle University for the postdoctoral fellowship.

Author contributions

HA, NS and KI designed the study. HA, IN and LC conducted physiological experiments. HPK, HA, IN, JMI designed chemotaxonomic analyses. DC carried out scanning electron microscopy analysis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants and/or animals performed by any of the authors. The formal consent is not required in this study.

Supplementary material

10482_2018_1222_MOESM1_ESM.docx (339 kb)
Supplementary material 1 (DOCX 338 kb)
10482_2018_1222_MOESM2_ESM.docx (16 kb)
Supplementary material 2 (DOCX 15 kb)


  1. Ay H, Nouioui I, del Carmen Montero-Calasanz M, Carro L, Klenk HP, Goodfellow M, Igual JM, Çetin D, Şahin N, Işık K (2017) Actinomadura alkaliterrae sp. nov., isolated from an alkaline soil. Antonie van Leeuwenhoek 110(6):787–794CrossRefGoogle Scholar
  2. Ay H, Nouioui I, del Carmen Montero-Calasanz M, Klenk HP, Isik K, Cetin D, Sahin N (2018) Streptomyces sediminis sp. nov. isolated from crater lake sediment. Antonie van Leeuwenhoek 111(4):493–500CrossRefGoogle Scholar
  3. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genom 9:75CrossRefGoogle Scholar
  4. Carro L, Veyisoglu A, Cetin D, Igual JM, Klenk HP, Trujillo ME, Sahin N (2018) A study of three bacteria isolated from marine sediment and description of Micromonospora globispora sp. nov. Syst Appl Microbiol. Google Scholar
  5. Chun J, Goodfellow M (1995) A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45:240–245CrossRefGoogle Scholar
  6. Collins MD (1985) 11 Analysis of isoprenoid quinones. In: Methods in microbiology, vol 18. Elsevier, pp 329–366Google Scholar
  7. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefGoogle Scholar
  8. Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for phylogenetic analysis. Cladistics 24:774–786CrossRefGoogle Scholar
  9. Goodfellow M, Fiedler HP (2010) A guide to successful bioprospecting: informed by actinobacterial systematics. Antonie Leeuwenhoek 98(2):119–142CrossRefGoogle Scholar
  10. Jukes TH, Cantor CR (1969) Evolution of protein molecules Mammalian protein metabolism 3:132Google Scholar
  11. Kämpfer P, Schäfer J, Lodders N, Martin K (2011) Jiangella muralis sp. nov., from an indoor environment. Int J Syst Evol Microbiol 61:128–131CrossRefGoogle Scholar
  12. Kelly K (1964) Color-name charts illustrated with centroid colors. Inter-Society Color Council-National Bureau of Standards, ChicagoGoogle Scholar
  13. Kroppenstedt RM, Goodfellow M (2006) The family Thermomonosporaceae: Actinocorallia, Actinomadura, Spirillospora and Thermomonospora. In: The Prokaryotes. Springer, pp 682–724Google Scholar
  14. Lechevalier MP, Lechevalier H (1970) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Evol Microbiol 20:435–443Google Scholar
  15. Lee SD (2008) Jiangella alkaliphila sp. nov., an actinobacterium isolated from a cave. Int J Syst Evol Microbiol 58:1176–1179CrossRefGoogle Scholar
  16. Li L et al (2015) Phytoactinopolyspora endophytica gen. nov., sp. nov., a halotolerant filamentous actinomycete isolated from the roots of Glycyrrhiza uralensis. Int J Syst Evol Microbiol 65:2671–2677CrossRefGoogle Scholar
  17. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013a) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC bioinform 14:60CrossRefGoogle Scholar
  18. Meier-Kolthoff JP, Göker M, Spröer C, Klenk H-P (2013b) When should a DDH experiment be mandatory in microbial taxonomy? Arch Microbiol 195:413–418CrossRefGoogle Scholar
  19. Meier-Kolthoff JP et al (2014) Complete genome sequence of DSM 30083 T, the type strain (U5/41 T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 9:2CrossRefGoogle Scholar
  20. Minnikin D, O’donnell A, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett J (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241CrossRefGoogle Scholar
  21. Pattengale ND, Alipour M, Bininda-Emonds OR, Moret BM, Stamatakis A (2010) How many bootstrap replicates are necessary? J Comput Biol 17:337–354CrossRefGoogle Scholar
  22. Price MN, Dehal PS, Arkin AP (2010) FastTree 2–approximately maximum-likelihood trees for large alignments. PloS One 5:e9490CrossRefGoogle Scholar
  23. Qin S, Zhao G-Z, Li J, Zhu W-Y, Xu L-H, Li W-J (2009) Jiangella alba sp. nov., an endophytic actinomycete isolated from the stem of Maytenus austroyunnanensis. Int J Syst Evol Microbiol 59:2162–2165CrossRefGoogle Scholar
  24. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131CrossRefGoogle Scholar
  25. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  26. Sasser M (1990) Identification of bacteria through fatty acid analysis. In: Klement Z, Rudolph K, Sands D (eds) Methods in phytobacteriology. Akademiai Kiado, Budapest, pp 199–204Google Scholar
  27. Shirling ET, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Evol Microbiol 16:313–340Google Scholar
  28. Song L, Li W-J, Wang Q-L, Chen G-Z, Zhang Y-S, Xu L-H (2005) Jiangella gansuensis gen. nov., sp. nov., a novel actinomycete from a desert soil in north-west China. Int J Syst Evol Microbiol 55:881–884CrossRefGoogle Scholar
  29. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313CrossRefGoogle Scholar
  30. Staneck JL, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231Google Scholar
  31. Suksaard P, Duangmal K, Srivibool R, Xie Q, Hong K, Pathom-Aree W (2015) Jiangella mangrovi sp. nov., isolated from mangrove soil. Int J Syst Evol Microbiol 65:2569–2573CrossRefGoogle Scholar
  32. Swofford D (2002) PAUP* version 4.0 b10 Sinauer, Sunderland, MAGoogle Scholar
  33. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefGoogle Scholar
  34. Tang S-K, Zhi X-Y, Wang Y, Shi R, Lou K, Xu L-H, Li W-J (2011) Haloactinopolyspora alba gen. nov., sp. nov., a halophilic filamentous actinomycete isolated from a salt lake, with proposal of Jiangellaceae fam. nov. and Jiangellineae subord. nov. Int J Syst Evol Microbiol 61:194–200CrossRefGoogle Scholar
  35. Vaas LA, Sikorski J, Michael V, Göker M, Klenk H-P (2012) Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PloS One 7:e34846CrossRefGoogle Scholar
  36. Vaas LA, Sikorski J, Hofner B, Fiebig A, Buddruhs N, Klenk H-P, Göker M (2013) Opm: an R package for analysing OmniLog® phenotype microarray data. Bioinformatics 29:1823–1824CrossRefGoogle Scholar
  37. Wattam AR et al (2016) Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center. Nucleic Acids Res 45:D535–D542CrossRefGoogle Scholar
  38. Wayne L et al (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 37:463–464CrossRefGoogle Scholar
  39. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703CrossRefGoogle Scholar
  40. Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Molecular Biology and Genetics, Faculty of Science and ArtsOndokuz Mayis UniversitySamsunTurkey
  2. 2.School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUK
  3. 3.Dpto. de Microbiología y GenéticaUniversidad de SalamancaSalamancaSpain
  4. 4.Science Teaching Programme, Gazi Faculty of EducationGazi UniversityAnkaraTurkey
  5. 5.Instituto de Recursos Naturales y Agrobiologia de Salamanca, Consejo Superior de Investigaciones Cientificas (IRNASA-CSIC)SalamancaSpain
  6. 6.Department of Biology, Faculty of Science and ArtsOndokuz Mayis UniversitySamsunTurkey

Personalised recommendations