Skip to main content
Log in

Antifungal activity of 4-hydroxy-3-(3-methyl-2-butenyl)acetophenone against Candida albicans: evidence for the antifungal mode of action

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The main secondary metabolite of Senecio nutans is 4-hydroxy-3-(3-methyl-2-butenyl)acetophenone (4HMBA). The antifungal activity of this compound and three derivatives was assessed using Candida albicans. 4HMBA exhibited the highest antifungal activity among the assayed compounds. The Fractional Inhibitory Concentration (FIC = 0.133) indicated a synergistic fungicidal effect of 4HMBA (5 mg L−1) and fluconazole (FLU) (0.5 mg L−1) against the C. albicans reference strain (ATCC 10231). Microscopy showed that 4HMBA inhibits filamentation and reduces cell wall thickness. Our findings suggest that 4HMBA is an interesting compound to diminish resistance to commercial fungistatic drugs such as fluconazole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bachmann SP, VandeWalle K, Ramage G, Patterson TF, Wickes BL, Graybill JR, Lopez-Ribot JL (2002) In vitro activity of echinocandins against Candida albicans biofilms. Antimicrob Agents Chemother 46:3591–3596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barboza GE, Cantero JJ, Núñez C, Pacciaroni A, Espinar LA (2009) Medicinal plants: a general review and a phytochemical and ethnopharmacological screening of the native Argentine Flora. Kurtziana 34:240

    Google Scholar 

  • Barelle CJ, Bohula EA, Kron SJ, Wessels D, Soll DR, Schäfer A, Brown AJP, Gow NAR (2003) Asynchronous cell cycle and asymmetric vacuolar inheritance in true hyphae of Candida albicans. Eukaryot Cell 2:398–410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boeck P, Leal PC, Yunes RA, Cechinel Filho V, López S, Sortino M, Escalante A, Furlán RLE, Zacchino S (2005) Antifungal activity and studies on mode of action of novel xanthoxyline-derived chalcones. Archiv der Pharm 338:87–95

    Article  CAS  Google Scholar 

  • Bonifait L, Marquis A, Genovese S, Epifano F, Grenier D (2012) Synthesis and antimicrobial activity of geranyloxy- and farnesyloxy-acetophenone derivatives against oral pathogens. Fitoterapia 83:996–999

    Article  CAS  PubMed  Google Scholar 

  • Cantón E, Pemán J, Viudes A, Quindós G, Gobernado M, Espinel-Ingroff A (2003) Minimum fungicidal concentrations of amphotericin B for bloodstream Candida species. Diagn Microbiol Infec Dis 45:203–206

    Article  Google Scholar 

  • Chaturvedi V, Ramani R, Ghannoum MA, Killian SB, Holliday N, Knapp C, Ostrosky-Zeichner L, Messer SA, Pfaller MA, Iqbal NJ, Arthington-Skaggs BA, Vazquez JA, Sein T, Rex JH, Walsh TJ (2008) Multilaboratory testing of antifungal combinations against a quality control isolate of Candida krusei. Antimicrob Agents Chemother 52:1500–1502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clinical Laboratory Standards Institute (CLSI) protocols. Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard—3rd Edition, M27-A3. Wayne, 2008

  • Endo EH, Garcia Cortez DA, Nakamura TU, Nakamura CV, Dias Filho BP (2010) Potent antifungal activity of extracts and pure compound isolated from pomegranate peels and synergism with fluconazole against Candida albicans. Res Microbiol 161:534–540

    Article  PubMed  Google Scholar 

  • Fiori A, Van Dijck P (2012) Potent synergistic effect of doxycycline with fluconazole against Candida albicans is mediated by interference with iron homeostasis. Antimicrob Agents Chemother 56:3785–3796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flynn S, Hollis A, Palmedo M (2009) An economic justification for open access to essential medicine patents in developing countries. J Law Med Ethics 37:184–208

    Article  PubMed  Google Scholar 

  • Khokhar S, Owusu Apenten RK (2003) Iron binding characteristics of phenolic compounds: some tentative structure–activity relations. Food Chem 81:133–140

    Article  CAS  Google Scholar 

  • Lizarraga E, Romano E, Rudyk R, Catalán CAN, Brandán SA (2012) Structural study, coordinated normal analysis and vibrational spectra of 4-hydroxy-3-(3-methyl-2-butenyl)acetophenone. Spectrochim Acta A 97:399–406

    Article  Google Scholar 

  • Loyola LA, Pedreros S, Morales G (1985) p-hidroxyacetohenone derivatives from Senecio graveolens. Phytochem 24:1600–1602

    Article  CAS  Google Scholar 

  • Ma Y-T, Fan H-F, Gao Y-Q, Li H, Zhang A-L, Gao J-M (2013) Natural products as sources of new fungicides (I): synthesis and antifungal activity of acetophenone derivatives against phytopathogenic fungi. Chem Biol Drug Design 81:545–552

    Article  CAS  Google Scholar 

  • Maioli MA, Alves LC, Campanini AL, Lima MC, Dorta DJ, Groppo M, Cavalheiro AJ, Curti C, Mingatto FE (2010) Iron chelating-mediated antioxidant activity of Plectranthus barbatus extract on mitochondria. Food Chem 122:203–208

    Article  CAS  Google Scholar 

  • Odds FC (2003) Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 65:1

    Article  Google Scholar 

  • Onyewu C, Wormley FL Jr, Perfect JR, Heitman J (2004) The calcineurin target, crz1, functions in azole tolerance but is not required for virulence of Candida albicans. Infect Immun 72:7330–7333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pfaller MA, Messer SA, Boyken L, Rice C, Tendolkar S, Hollis RJ, Diekema DJ (2004) Further standardization of broth microdilution methodology for in vitro susceptibility testing of caspofungin against Candida species by use of an international collection of more than 3000 clinical isolates. J Clin Microbiol 42:3117–3119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prasad T, Chandra A, Mukhopadhyay CK, Prasad R (2006) Unexpected link between iron and drug resistance of Candida spp.: iron depletion enhances membrane fluidity and drug diffusion, leading to drug-susceptible cells. Antimicrob Agents Chemother 50:3597–3606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reedy JL, Filler SG, Heitman J (2010) Elucidating the Candida albicans calcineurin signaling cascade controlling stress response and virulence. Fungal Genet Biol 47:107–116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ríos JL, Recio MC (2005) Medicinal plants and antimicrobial activity. J Ethnopharm 100:80–84

    Article  Google Scholar 

  • Sanglard D, Ischer F, Marchetti O, Entenza J, Bille J (2003) Calcineurin A of Candida albicans: involvement in antifungal tolerance, cell morphogenesis and virulence. Mol Microbiol 48:959–976

    Article  CAS  PubMed  Google Scholar 

  • Soberón JR, Sgariglia MA, Sampietro DA, Quiroga EN, Vattuone MA (2007) Antibacterial activity of plant extracts from northwestern Argentina. J Appl Microbiol 102:1450–1461

    Article  PubMed  Google Scholar 

  • Steinbach WJ, Schell WA, Blankenship WR, Onyewu C, Heitman J, Perfect JR (2004) In vitro interactions between antifungals and immunosuppressants against Aspergillus fumigatus. Antimicrob Agents Chemother 48:1664–1669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tobudic S, Kratzer C, Lassnigg A, Graninger W, Presterl E (2010) In vitro activity of antifungal combinations against Candida albicans biofilms. J Antimicrob Chemother 65:271–274

    Article  CAS  PubMed  Google Scholar 

  • Tomás-Barberán F, Iniesta-San Martín E, Tomás-Lorente F, Romero A (1990) Antimicrobial phenolic compounds from three spanish Helicrysum species. Phytochem 29:1093–1095

    Article  Google Scholar 

  • Uppuluri P, Nett J, Heitman J, Andes D (2008) Synergistic effect of calcineurin inhibitors and fluconazole against Candida albicans biofilms. Antimicrob Agents Chemother 52:1127–1132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • White TC, Holleman S, Dy F, Mirels LF, Stevens DA (2002) Resistance mechanisms in clinical isolates of Candida albicans. Antimicrob Agents Chemother 46:1704–1713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu N, Qian K, Dong Y, Chen Y, Yu Q, Zhang B, Xing L, Li M (2014) Novel role of the Candida albicans ferric reductase gene CFL1 in iron acquisition, oxidative stress tolerance, morphogenesis and virulence. Res Microbiol 165:252–261

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ing. Alberto Andrade and Lic. Manuel Siñeriz from LAMENOA (Laboratorio de Microscopía Electrónica del Noroeste Argentino–UNT-CONICET) for technical advice and assistance. This work was supported by grants from Secretaría de Ciencia y Técnica of the Universidad Nacional de Tucumán (CIUNT; Tucumán, Argentina), from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET; Buenos Aires, Argentina), and from Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT; Buenos Aires, Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José R. Soberón.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 189 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soberón, J.R., Lizarraga, E.F., Sgariglia, M.A. et al. Antifungal activity of 4-hydroxy-3-(3-methyl-2-butenyl)acetophenone against Candida albicans: evidence for the antifungal mode of action. Antonie van Leeuwenhoek 108, 1047–1057 (2015). https://doi.org/10.1007/s10482-015-0559-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-015-0559-3

Keywords

Navigation