Advertisement

Development of a multi-objective model for the design of sustainable supply chains: the case of perishable food products

  • Volha YakavenkaEmail author
  • Ioannis Mallidis
  • Dimitrios Vlachos
  • Eleftherios Iakovou
  • Zafeiriou Eleni
S.I.: BALCOR-2017
  • 91 Downloads

Abstract

The role of sustainability in the function of a company and more specifically a food company is pivotal for its financial performance. The environmental issues as well as the potential economic gains from the implementation of its principles ask for the use of multiple instruments that have been developed to green supply chains. Moreover, social issues also arise and involve the food companies social responsibility, as this can be realized through the supply of fresh products that meet consumption security standards. On this basis, the strategic design of these companies’ supply chains can assists them towards meeting their sustainability objectives as it may lead to the selection of transportation modes, location of entry points and distribution centers, and flows between the nodes of the networks under cost, environmental and social impact minimization criteria. Under this context the purpose of this manuscript is to develop and employ a multi-objective (namely cost, social-time and emission minimization) mixed integer linear programming decision-making model for the network design of sustainable supply chains of perishable food products. The specific model was implemented in the case of a fruits importer in the North-Eastern European region considering its geographical settings. To synopsize and according to our findings the suggested model is an easy to use decision-making tool that leads to a whole set of possible solutions incorporating trade-offs between three aspects of sustainability.

Keywords

Sustainable supply chain Supply chain design Perishable food products Decision-making Multi-objective optimization 

Notes

References

  1. Adekomaya, O., Jamiru, T., Sadiku, R., & Huan, Z. (2016). Sustaining the shelf life of fresh food in cold chain—A burden on the environment. Alexandria Engineering Journal, 55(2), 1359–1365.  https://doi.org/10.1016/j.aej.2016.03.024.CrossRefGoogle Scholar
  2. Ahumada, O., & Villalobos, J. R. (2009). Application of planning models in the agri-food supply chain: A review. European Journal of Operational Research, 196(1), 1–20.  https://doi.org/10.1016/j.ejor.2008.02.014.CrossRefGoogle Scholar
  3. Akkerman, R., Farahani, P., & Grunow, M. (2010). Quality, safety and sustainability in food distribution: A review of quantitative operations management approaches and challenges. OR Spectrum, 32(4), 863–904.  https://doi.org/10.1007/s00291-010-0223-2.CrossRefGoogle Scholar
  4. Ala-Harja, H., & Helo, P. (2015). Reprint of “Green supply chain decisions—Case-based performance analysis from the food industry”. Transportation Research Part E: Logistics and Transportation Review, 74, 11–21.  https://doi.org/10.1016/j.tre.2014.12.005.CrossRefGoogle Scholar
  5. Allaoui, H., Guo, Y., Choudhary, A., & Bloemhof, J. (2018). Sustainable agro-food supply chain design using two-stage hybrid multi-objective decision-making approach. Computers & Operations Research, 89, 369–384.  https://doi.org/10.1016/j.cor.2016.10.012.CrossRefGoogle Scholar
  6. Amorim, P., & Almada-Lobo, B. (2014). The impact of food perishability issues in the vehicle routing problem. Computers & Industrial Engineering, 67, 223–233.  https://doi.org/10.1016/j.cie.2013.11.006.CrossRefGoogle Scholar
  7. Apivatanangul, P. (2008). Network design formulations, modeling, and solution algorithms for goods movement strategic planning.Google Scholar
  8. Arvis, J.-F., Smith, G., & Carruthers, R. (2011). Connecting landlocked developing countries to markets. Washington: The World Bank.  https://doi.org/10.1596/978-0-8213-8416-9.CrossRefGoogle Scholar
  9. Baykasoğlu, A., & Subulan, K. (2016). A multi-objective sustainable load planning model for intermodal transportation networks with a real-life application. Transportation Research Part E: Logistics and Transportation Review.  https://doi.org/10.1016/j.tre.2016.09.011.CrossRefGoogle Scholar
  10. Beske, P., Land, A., & Seuring, S. (2014). Sustainable supply chain management practices and dynamic capabilities in the food industry: A critical analysis of the literature. International Journal of Production Economics.  https://doi.org/10.1016/j.ijpe.2013.12.026.CrossRefGoogle Scholar
  11. Bortolini, M., Faccio, M., Ferrari, E., Gamberi, M., & Pilati, F. (2016). Fresh food sustainable distribution: Cost, delivery time and carbon footprint three-objective optimization. Journal of Food Engineering, 174, 56–67.  https://doi.org/10.1016/j.jfoodeng.2015.11.014.CrossRefGoogle Scholar
  12. Bortolini, M., Galizia, F. G., Mora, C., Botti, L., & Rosano, M. (2018). Bi-objective design of fresh food supply chain networks with reusable and disposable packaging containers. Journal of Cleaner Production, 184, 375–388.  https://doi.org/10.1016/j.jclepro.2018.02.231.CrossRefGoogle Scholar
  13. Bouchery, Y., & Fransoo, J. (2015). Cost, carbon emissions and modal shift in intermodal network design decisions. International Journal of Production Economics, 164, 388–399.  https://doi.org/10.1016/j.ijpe.2014.11.017.CrossRefGoogle Scholar
  14. Chaabane, A., Ramudhin, A., & Paquet, M. (2012). Design of sustainable supply chains under the emission trading scheme. International Journal of Production Economics.  https://doi.org/10.1016/j.ijpe.2010.10.025.CrossRefGoogle Scholar
  15. Chen, H.-K., Hsueh, C.-F., & Chang, M.-S. (2009). Production scheduling and vehicle routing with time windows for perishable food products. Computers & Operations Research, 36(7), 2311–2319.  https://doi.org/10.1016/j.cor.2008.09.010.CrossRefGoogle Scholar
  16. Current, J., & Min, H. K. (1986). Multiobjective design of transportation networks: Taxonomy and annotation. European Journal of Operational Research.  https://doi.org/10.1016/0377-2217(86)90180-3.CrossRefGoogle Scholar
  17. Dekker, R., Bloemhof, J., & Mallidis, I. (2012). Operations research for green logistics—An overview of aspects, issues, contributions and challenges. European Journal of Operational Research, 219(3), 671–679.  https://doi.org/10.1016/J.EJOR.2011.11.010.CrossRefGoogle Scholar
  18. Demir, E., Burgholzer, W., Hrušovský, M., Arıkan, E., Jammernegg, W., & Woensel, T. Van. (2016). A green intermodal service network design problem with travel time uncertainty. Transportation Research Part B: Methodological, 93, 789–807.  https://doi.org/10.1016/j.trb.2015.09.007.CrossRefGoogle Scholar
  19. Elhedhli, S., & Merrick, R. (2012). Green supply chain network design to reduce carbon emissions. Transportation Research Part D: Transport and Environment, 17(5), 370–379.  https://doi.org/10.1016/j.trd.2012.02.002.CrossRefGoogle Scholar
  20. Eskandarpour, M., Dejax, P., Miemczyk, J., & Péton, O. (2015). Sustainable supply chain network design: An optimization-oriented review. Omega, 54, 11–32.  https://doi.org/10.1016/j.omega.2015.01.006.CrossRefGoogle Scholar
  21. FAO. (2018). Key facts on food loss and waste. Retrieved March 18, 2019, from http://www.fao.org/save-food/resources/keyfindings/en/.
  22. Govindan, K., Jafarian, A., Khodaverdi, R., & Devika, K. (2014). Two-echelon multiple-vehicle location–routing problem with time windows for optimization of sustainable supply chain network of perishable food. International Journal of Production Economics, 152, 9–28.  https://doi.org/10.1016/j.ijpe.2013.12.028.CrossRefGoogle Scholar
  23. Hsiao, Y. H., Chen, M. C., & Chin, C. L. (2017). Distribution planning for perishable foods in cold chains with quality concerns: Formulation and solution procedure. Trends in Food Science & Technology.  https://doi.org/10.1016/j.tifs.2016.11.016.CrossRefGoogle Scholar
  24. Kleindorfer, P. R., Singhal, K., & Wassenhove, L. N. (2009). Sustainable operations management. Production and Operations Management, 14(4), 482–492.  https://doi.org/10.1111/j.1937-5956.2005.tb00235.x.CrossRefGoogle Scholar
  25. Kretschmer, B., Smith, C., Watkins, E., Allen, B., Buckwell, A., Desbarats, J., et al. (2013). Technology options for recycling agricultural, forestry and food wastes and residues for sustainable bioenergy and biomaterials. Report for the European Parliament, STOA, as part of the study ‘Technology Options for Feeding 10 Billion People.’ Institute for European Environmental Policy (IEEP).  https://doi.org/10.2861/43440.
  26. Lei, K., Zhu, X., Hou, J., & Huang, W. (2014). Decision of multimodal transportation scheme based on swarm intelligence. Mathematical Problems in Engineering.  https://doi.org/10.1155/2014/932832.CrossRefGoogle Scholar
  27. Magnanti, T. L., & Wong, R. T. (1984). Network design and transportation planning models and algorithms.pdf. Transportation Science, 18(1), 1–55.  https://doi.org/10.1287/trsc.18.1.1.CrossRefGoogle Scholar
  28. Mallidis, I., Dekker, R., & Vlachos, D. (2012). The impact of greening on supply chain design and cost: A case for a developing region. Journal of Transport Geography.  https://doi.org/10.1016/j.jtrangeo.2011.12.007.CrossRefGoogle Scholar
  29. Melo, M. T., Nickel, S., & Saldanha-da-Gama, F. (2009). Facility location and supply chain management—A review. European Journal of Operational Research.  https://doi.org/10.1016/j.ejor.2008.05.007.CrossRefGoogle Scholar
  30. Mogale, D. G., Kumar, M., Kumar, S. K., & Tiwari, M. K. (2018). Grain silo location-allocation problem with dwell time for optimization of food grain supply chain network. Transportation Research Part E: Logistics and Transportation Review, 111, 40–69.  https://doi.org/10.1016/j.tre.2018.01.004.CrossRefGoogle Scholar
  31. Mohammed, A., & Wang, Q. (2017a). Developing a meat supply chain network design using a multi-objective possibilistic programming approach. British Food Journal, 119(3), 690–706.  https://doi.org/10.1108/BFJ-10-2016-0475.CrossRefGoogle Scholar
  32. Mohammed, A., & Wang, Q. (2017b). The fuzzy multi-objective distribution planner for a green meat supply chain. International Journal of Production Economics, 184, 47–58.  https://doi.org/10.1016/j.ijpe.2016.11.016.CrossRefGoogle Scholar
  33. Mula, J., Peidro, D., Díaz-Madroñero, M., & Vicens, E. (2010). Mathematical programming models for supply chain production and transport planning. European Journal of Operational Research.  https://doi.org/10.1016/j.ejor.2009.09.008.CrossRefGoogle Scholar
  34. Musavi, M., & Bozorgi-Amiri, A. (2017). A multi-objective sustainable hub location-scheduling problem for perishable food supply chain. Computers & Industrial Engineering, 113, 766–778.  https://doi.org/10.1016/j.cie.2017.07.039.CrossRefGoogle Scholar
  35. Osvald, A., & Stirn, L. Z. (2008). A vehicle routing algorithm for the distribution of fresh vegetables and similar perishable food. Journal of Food Engineering.  https://doi.org/10.1016/j.jfoodeng.2007.07.008.CrossRefGoogle Scholar
  36. Resat, H. G., & Turkay, M. (2015). Design and operation of intermodal transportation network in the Marmara region of Turkey. Transportation Research Part E: Logistics and Transportation Review.  https://doi.org/10.1016/j.tre.2015.08.006.CrossRefGoogle Scholar
  37. Research, G. V. (2018). Food and grocery retail market analysis report by type, by region and segment forecasts, 2011–2020. Retrieved December 5, 2018, from https://www.marketwatch.com/press-release/the-global-food-and-grocery-retail-market-size-is-expected-to-reach-usd-1224-trillion-by-2020-2018-08-27.
  38. Rodrigue, J. P. (2017). The geography of transport systems, 4 edn. New York: Routledge.Google Scholar
  39. Rodrigue, J.-P., & Hesse, M. (2004). The transport geography of logistics and freight distribution. Journal of Transport Geography.  https://doi.org/10.1016/j.jtrangeo.2003.12.004.CrossRefGoogle Scholar
  40. Rohmer, S. U. K., Gerdessen, J. C., & Claassen, G. D. H. (2019). Sustainable supply chain design in the food system with dietary considerations: A multi-objective analysis. European Journal of Operational Research, 273(3), 1149–1164.  https://doi.org/10.1016/j.ejor.2018.09.006.CrossRefGoogle Scholar
  41. Rong, A., Akkerman, R., & Grunow, M. (2011). An optimization approach for managing fresh food quality throughout the supply chain. International Journal of Production Economics, 131(1), 421–429.  https://doi.org/10.1016/j.ijpe.2009.11.026.CrossRefGoogle Scholar
  42. Soto-Silva, W. E., Nadal-Roig, E., González-Araya, M. C., & Pla-Aragones, L. M. (2016). Operational research models applied to the fresh fruit supply chain. European Journal of Operational Research.  https://doi.org/10.1016/j.ejor.2015.08.046.CrossRefGoogle Scholar
  43. Soysal, M., Bloemhof-Ruwaard, J. M., & van der Vorst, J. G. A. J. (2014). Modelling food logistics networks with emission considerations: The case of an international beef supply chain. International Journal of Production Economics, 152, 57–70.  https://doi.org/10.1016/j.ijpe.2013.12.012.CrossRefGoogle Scholar
  44. Tsolakis, N. K., Keramydas, C. A., Toka, A. K., Aidonis, D. A., & Iakovou, E. T. (2014). Agrifood supply chain management: A comprehensive hierarchical decision-making framework and a critical taxonomy. Biosystems Engineering, 120, 47–64.  https://doi.org/10.1016/j.biosystemseng.2013.10.014.CrossRefGoogle Scholar
  45. Tuljak-suban, D., & Suban, V. (2015). Influence of transportation mode to the deterioration rate: Case study of food transport by ship. International Journal of Architectural and Environmental Engineering, 9(1), 38–42.Google Scholar
  46. Validi, S., Bhattacharya, A., & Byrne, P. J. (2014). A case analysis of a sustainable food supply chain distribution system—A multi-objective approach. International Journal of Production Economics, 152(2), 71–87.  https://doi.org/10.1016/j.ijpe.2014.02.003.CrossRefGoogle Scholar
  47. van der Vorst, J. G. A. J., Tromp, S.-O., & van der Zee, D.-J. (2009). Simulation modelling for food supply chain redesign: Integrated decision making on product quality, sustainability and logistics. International Journal of Production Research, 47(23), 6611–6631.  https://doi.org/10.1080/00207540802356747.CrossRefGoogle Scholar
  48. Verdouw, C. N., Beulens, A. J. M., Trienekens, J. H., & Wolfert, J. (2010). Process modelling in demand-driven supply chains: A reference model for the fruit industry. Computers and Electronics in Agriculture.  https://doi.org/10.1016/j.compag.2010.05.005.CrossRefGoogle Scholar
  49. Vermeulen, S. J., Campbell, B. M., & Ingram, J. S. I. (2012). Climate change and food systems. Annual Review of Environment and Resources, 37(1), 195–222.  https://doi.org/10.1146/annurev-environ-020411-130608.CrossRefGoogle Scholar
  50. Wang, X., Wang, M., Ruan, J., & Zhan, H. (2016). The multi-objective optimization for perishable food distribution route considering temporal–spatial distance. Procedia Computer Science.  https://doi.org/10.1016/j.procs.2016.08.165.CrossRefGoogle Scholar
  51. Wognum, P. M. N., Bremmers, H., Trienekens, J. H., Van Der Vorst, J. G. A. J., & Bloemhof, J. M. (2010). Advanced engineering informatics systems for sustainability and transparency of food supply chains—Current status and challenges. Advanced Engineering Informatics.  https://doi.org/10.1016/j.aei.2010.06.001.CrossRefGoogle Scholar
  52. Xu, X., Chen, A., & Yang, C. (2016). A review of sustainable network design for road networks. KSCE Journal of Civil Engineering.  https://doi.org/10.1007/s12205-016-1729-1.CrossRefGoogle Scholar
  53. Yang, H., & Bell, M. G. H. (1998). 1998 Models and algorithms for road network design.pdf.  https://doi.org/10.1080/01441649808717016.CrossRefGoogle Scholar
  54. Zeng, T., Hu, D., & Huang, G. (2013). The transportation mode distribution of multimodal transportation in automotive logistics. Procedia—Social and Behavioral Sciences.  https://doi.org/10.1016/j.sbspro.2013.08.048.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Statistics and Quantitative Analysis Methods (Logistics and Supply Chain Management) (LASCM), Mechanical Engineering DepartmentAristotle University of ThessalonikiThessaloníkiGreece
  2. 2.Engineering Technology and Industrial Distribution DepartmentTexas A&M UniversityCollege StationUSA
  3. 3.Laboratory of Applied Economic Statistics and Informatics, Department of Agricultural DevelopmentDemocritus University of ThraceOrestiadaGreece

Personalised recommendations