Advertisement

Determination of feeding strategies in aquaculture farms using a multiple-criteria approach and genetic algorithms

  • Manuel LunaEmail author
  • Ignacio Llorente
  • Angel Cobo
S.I.: Agriculture Analytics, BigData and Sustainable Development
  • 30 Downloads

Abstract

Since the 1990s, fishing production has stagnated and aquaculture has experienced an exponential growth thanks to the production on an industrial scale. One of the major challenges facing aquaculture companies is the management of breeding activity affected by biological, technical, environmental and economic factors. In recent years, decision-making has also become increasingly complex due to the need for managers to consider aspects other than economic ones, such as product quality or environmental sustainability. In this context, there is an increasing need for expert systems applied to decision-making processes that maximize the economic efficiency of the operational process. One of the production planning decisions more affected by these changes is the feeding strategy. The selection of the feed determines the growth of the fish, but also generates the greatest impact of the activity on the environment and determines the quality of the product. In addition, feed is the main production cost in finfish aquaculture. In order to address all these problems, the present work integrates a multiple-criteria methodology with a genetic algorithm that allows determining the best sequence of feeds to be used throughout the fattening period, depending on multiple optimization objectives. Results show its utility to generate and evaluate different alternatives and fulfill the initial hypothesis, demonstrating that the combination of several feeds at precise times may improve the results obtained by one-feed strategies.

Keywords

Aquaculture management Operational research Genetic algorithms Multiple-criteria Decision-making Feeding strategies 

Notes

Acknowledgements

This paper is part of the MedAID project which has received funding from the European Union’s H2020 program under Grant Agreement 727315. The authors also wish to thank the Ibero-American Program for the Development of Science and Technology, CYTED, and the Red Iberoamericana BigDSSAgro (Ref. P515RT0123) for their support of this work.

References

  1. Abdou, K., Aubin, J., Romdhane, M., Le Loc’h, F., & Lasram, F. (2017). Environmental assessment of seabass (Dicentrarchus labrax) and seabream (Sparus aurata) farming from a life cycle perspective: A case study of a Tunisian aquaculture farm. Aquaculture, 471, 204–212.  https://doi.org/10.1016/j.aquaculture.2017.01.019.CrossRefGoogle Scholar
  2. Abraham, A., Jain, C., & Goldberg, R. (2005). Evolutionary multiobjetive optimization: Theoretical advances and applications. Berlin: Springer.CrossRefGoogle Scholar
  3. Atia, D., Fahmy, F., Ahmed, N., & Dorrah, H. (2012). Optimal sizing of a solar water heating system based on a genetic algorithm for an aquaculture system. Mathematical and Computer Modelling, 55(3–4), 1436–1449.  https://doi.org/10.1016/j.mcm.2011.10.022.CrossRefGoogle Scholar
  4. Bjørndal, T., Lane, D., & Weintraub, A. (2004). Operational research models and the management of fisheries and aquaculture: A review. European Journal of Operational Research, 156(3), 533–540.  https://doi.org/10.1016/s0377-2217(03)00107-3.CrossRefGoogle Scholar
  5. Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization. ACM Computing Surveys, 35(3), 268–308.  https://doi.org/10.1145/937503.937505.CrossRefGoogle Scholar
  6. Boyd, C. E. (2015). Overview of aquaculture feeds: Global impacts of ingredient use. In A. Davids (Ed.), Feed and feeding practices in aquaculture (pp. 3–25). Sawston: Woodhead Publishing Series in Food Science, Technology and Nutrition.CrossRefGoogle Scholar
  7. Brett, J. R. (1979). Environmental factors and growth. Fish Physiology, 8, 599–675.  https://doi.org/10.1016/S1546-5098(08)60033-3.CrossRefGoogle Scholar
  8. Brown, R. C. (2003). Genetic management and selective breeding in farmed populations of gilthead seabream, Sparus aurata. Ph.D. Thesis, University of Stirling, UK. Retrieved April 9, 2019, from http://hdl.handle.net/1893/74.
  9. Cabral, J. B., Luczywo, N. A., & Zanazzi, J. L. (2016). Scikit-Criteria: Colección de Métodos de Análisis Multi-Criterio Integrado Al Stack Científico de Python. XLV Jornadas Argentinas de Informática E Investigación Operativa (45JAIIO)-XIV Simposio Argentino de Investigación Operativa (SIO), 59–66. http://hdl.handle.net/10915/58577.
  10. Casini, M., Mocenni, C., Paoletti, S., & Pranzo, M. (2015). Decision support system development for integrated management of European coastal lagoons. Environmental Modelling and Software, 64, 47–57.  https://doi.org/10.1016/j.envsoft.2014.11.008.CrossRefGoogle Scholar
  11. Chen, P., Wiley, E., & Mcnyset, K. (2006). Ecological niche modeling as a predictive tool: Silver and bighead carps in North America. Biological Invasions, 9(1), 43–51.  https://doi.org/10.1007/s10530-006-9004-x.CrossRefGoogle Scholar
  12. Cobo, A., Llorente, I., & Luna, L. (2015). Swarm intelligence in optimal management of aquaculture farms. In L. M. Plà-Aragonés (Ed.), Handbook of operations research in agriculture and the agri-food industry. Springer.Google Scholar
  13. Cobo, Á., Llorente, I., Luna, L., & Luna, M. (2018). A decision support system for fish farming using particle swarm optimization. Computers and Electronics in Agriculture.  https://doi.org/10.1016/j.compag.2018.03.036.Google Scholar
  14. D’Angelo, D., Meyer, J., Howard, L., Gregory, S., & Ashkenas, L. (1995). Ecological uses for genetic algorithms: Predicting fish distributions in complex physical habitats. Canadian Journal of Fisheries and Aquatic Sciences, 52(9), 1893–1908.  https://doi.org/10.1139/f95-782.CrossRefGoogle Scholar
  15. Dapueto, G., Massa, F., Costa, S., Cimoli, L., Olivari, E., Chiantore, M., et al. (2015). A spatial multi-criteria evaluation for site selection of offshore marine fish farm in the Ligurian Sea, Italy. Ocean and Coastal Management, 116, 64–77.  https://doi.org/10.1016/j.ocecoaman.2015.06.030.CrossRefGoogle Scholar
  16. de Verdal, H., Komen, H., Quillet, E., Chatain, B., Allal, F., Benzie, J., et al. (2017). Improving feed efficiency in fish using selective breeding: A review. Reviews In Aquaculture, 10(4), 833–851.  https://doi.org/10.1111/raq.12202.CrossRefGoogle Scholar
  17. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.  https://doi.org/10.1109/4235.996017.CrossRefGoogle Scholar
  18. El-Gayar, O., & Leung, P. (2001). A multiple criteria decision making framework for regional aquaculture development. European Journal of Operational Research, 133(3), 462–482.  https://doi.org/10.1016/s0377-2217(00)00183-1.CrossRefGoogle Scholar
  19. Ernst, D., Bolte, J., & Nath, S. (2000). AquaFarm: Simulation and decision support for aquaculture facility design and management planning. Aquacultural Engineering, 23(1–3), 121–179.  https://doi.org/10.1016/s0144-8609(00)00045-5.CrossRefGoogle Scholar
  20. European Commission. (2008). Commission Regulation No 889/2008 of 5 September 2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control. Including amendments. Retrieved April 9, 2019, from https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1515078877100&uri=CELEX:02008R0889-20180101.
  21. Figueira, J., Greco, S., & Ehrogott, M. (2005). Multiple criteria decision analysis: State of the art surveys. New York, NY: Springer Science + Business Media, Inc.CrossRefGoogle Scholar
  22. Goddard, S. (1996). Feed management in intensive aquaculture. New York: Chapman & Hall.CrossRefGoogle Scholar
  23. Goldberg, D. (2012). Genetic algorithms in search, optimization, and machine learning. Boston: Addison-Wesley.Google Scholar
  24. Goldberg, D., & Holland, J. (1988). Genetic algorithms and machine learning. Machine Learning, 3(2–3), 95–99.  https://doi.org/10.1023/A:1022602019183.CrossRefGoogle Scholar
  25. Grigorakis, K. (2010). Effects of nutrition and aquaculture practices on fish quality. In C. Alasalvar, F. Shahidi, K. Miyashita, & U. Wanasundara (Eds.), Handbook of seafood quality, safety and health applications (pp. 82–95). Hoboken: Wiley-Blackwell.CrossRefGoogle Scholar
  26. Hormiga, J., Almansa, E., Sykes, A., & Torres, N. (2010). Model based optimization of feeding regimens in aquaculture: Application to the improvement of Octopus vulgaris viability in captivity. Journal of Biotechnology, 149(3), 209–214.  https://doi.org/10.1016/j.jbiotec.2009.12.008.CrossRefGoogle Scholar
  27. Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making: Methods and applications. New York: Springer.  https://doi.org/10.1007/978-3-642-48318-9.CrossRefGoogle Scholar
  28. Ishibuchi, H., Tsukamoto, N., & Nojima, Y. (2008). Evolutionary many-objective optimization: A short review. In Proceedings of the congress on evolutionary computation (IEEE world congress on computational intelligence).Google Scholar
  29. Ishizaka, A., & Labib, A. (2011). Review of the main developments in the analytic hierarchy process. Expert Systems with Applications, 38(11), 14336–14345.  https://doi.org/10.1016/j.eswa.2011.04.143.Google Scholar
  30. Kousoulaki, K., Saether, B., Albrektsen, S., & Noble, C. (2015). Review on European sea bass (Dicentrarchus labrax, Linnaeus, 1758) nutrition and feed management: A practical guide for optimizing feed formulation and farming protocols. Aquaculture Nutrition, 21(2), 129–151.  https://doi.org/10.1111/anu.12233.CrossRefGoogle Scholar
  31. Lamata, M., Liern, V., & Pérez-Gladish, B. (2016). Doing good by doing well: A MCDM framework for evaluating corporate social responsibility attractiveness. Annals of Operations Research, 267(1–2), 249–266.  https://doi.org/10.1007/s10479-016-2271-8.Google Scholar
  32. Lee, C. (2018). A review of applications of genetic algorithms in operations management. Engineering Applications of Artificial Intelligence, 76, 1–12.  https://doi.org/10.1016/j.engappai.2018.08.011.CrossRefGoogle Scholar
  33. Lembo, G., Jokumsen, A., Spedicato, M., Facchini, M., & Bitetto, I. (2018). Assessing stakeholder’s experience and sensitivity on key issues for the economic growth of organic aquaculture production. Marine Policy, 87, 84–93.  https://doi.org/10.1016/j.marpol.2017.10.005.CrossRefGoogle Scholar
  34. Liu, S., Tai, H., Ding, Q., Li, D., Xu, L., & Wei, Y. (2013). A hybrid approach of support vector regression with genetic algorithm optimization for aquaculture water quality prediction. Mathematical and Computer Modelling, 58(3–4), 458–465.  https://doi.org/10.1016/j.mcm.2011.11.021.CrossRefGoogle Scholar
  35. Llorente, I., & Luna, L. (2013). The competitive advantages arising from different environmental conditions in seabream, Sparus aurata, production in the mediterranean sea. Journal of the World Aquaculture Society, 44(5), 611–627.  https://doi.org/10.1111/jwas.12069.CrossRefGoogle Scholar
  36. Llorente, I., & Luna, L. (2014). Economic optimisation in seabream (Sparus aurata) aquaculture production using a particle swarm optimisation algorithm. Aquaculture International, 22(6), 1837–1849.  https://doi.org/10.1007/s10499-014-9786-2.CrossRefGoogle Scholar
  37. Luna, L. (2002). Economic analysis of finfish mariculture operations in Spain. Aquaculture Economics & Management, 6(1–2), 65–79.  https://doi.org/10.1080/13657300209380304.Google Scholar
  38. Luna, M., Llorente, I., & Cobo, Á. (2019). Integration of environmental sustainability and product quality criteria in the decision-making process for feeding strategies in seabream aquaculture companies. Journal of Cleaner Production, 217, 691–701.  https://doi.org/10.1016/j.jclepro.2019.01.248.CrossRefGoogle Scholar
  39. MAPAMA. (2012). Estudio de la cadena de valor y formación de precios de la Dorada de acuicultura. Madrid: Observatorio de Precios de los Alimentos.Google Scholar
  40. Mardle, S., Pascoe, S., & Tamiz, M. (2000). An investigation of genetic algorithms for the optimization of multi-objective fisheries bioeconomic models. International Transactions In Operational Research, 7(1), 33–49.  https://doi.org/10.1111/j.1475-3995.2000.tb00183.x.CrossRefGoogle Scholar
  41. Michalewicz, Z. (1996). Genetic algorithms + data structures = evolution programs. Berlin: Springer.CrossRefGoogle Scholar
  42. Parks, G. (1996). Multiobjective pressurized water reactor reload core design by nondominated genetic algorithm search. Nuclear Science and Engineering, 124(1), 178–187.  https://doi.org/10.13182/nse96-a24233.CrossRefGoogle Scholar
  43. Pelletier, N., & Tyedmers, P. (2007). Feeding farmed salmon: Is organic better? Aquaculture, 272(1–4), 399–416.  https://doi.org/10.1016/j.aquaculture.2007.06.024.CrossRefGoogle Scholar
  44. Saaty, R. W. (1987). The analytic hierarchy process—What it is and how it is used. Mathematical Modelling, 9, 161–176.  https://doi.org/10.1016/0270-0255(87)90473-8.CrossRefGoogle Scholar
  45. Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.Google Scholar
  46. Schulstad, G. (1997). Design of a computerized decision support system for hatchery production management. Aquacultural Engineering, 16(1–2), 7–25.  https://doi.org/10.1016/s0144-8609(96)01016-3.CrossRefGoogle Scholar
  47. Shahidi, F., & Alasalvar, C. (2010). Marine oils and other marine nutraceuticals. In C. Alasalvar, F. Shahidi, K. Miyashita, & U. Wanasundara (Eds.), Handbook of seafood quality, safety and health applications (pp. 444–454). Hoboken: Wiley-Blackwell.CrossRefGoogle Scholar
  48. Shih, Y. (2017). Integrated GIS and AHP for marine aquaculture site selection in Penghu Cove in Taiwan. Journal of Coastal Zone Management.  https://doi.org/10.4172/2473-3350.1000438.Google Scholar
  49. Siriwardene, N., & Perera, B. (2006). Selection of genetic algorithm operators for urban drainage model parameter optimisation. Mathematical and Computer Modelling, 44(5–6), 415–429.  https://doi.org/10.1016/j.mcm.2006.01.002.CrossRefGoogle Scholar
  50. Sørensen, M. (2012). A review of the effects of ingredient composition and processing conditions on the physical qualities of extruded high-energy fish feed as measured by prevailing methods. Aquaculture Nutrition, 18(3), 233–248.  https://doi.org/10.1111/j.1365-2095.2011.00924.x.CrossRefGoogle Scholar
  51. Stafford, R. (2008). A computational approach to ecological and economic sustainable harvest management strategies in a multi-species context, with implications for cod recovery plans. Ecological Informatics, 3(1), 105–110.  https://doi.org/10.1016/j.ecoinf.2007.12.001.CrossRefGoogle Scholar
  52. Stagnitti, F. (1997). A decision support tool for aquaculture. Environmental Modelling and Software, 12(2–3), 229–236.  https://doi.org/10.1016/s1364-8152(97)00015-7.CrossRefGoogle Scholar
  53. Triantaphyllou, E. (2000). Multi-criteria decision making methods. Dordrecht: Kluwer Academic Publishers.  https://doi.org/10.1007/978-1-4757-3157-6.CrossRefGoogle Scholar
  54. Tzeng, G. H., & Huang, J. J. (2011). Multiple attribute decision making. New York: Chapman and Hall/CRC.  https://doi.org/10.1201/b11032.Google Scholar
  55. Vieira, L., & Amaral, F. (2016). Barriers and strategies applying Cleaner Production: A systematic review. Journal of Cleaner Production, 113, 5–16.  https://doi.org/10.1016/j.jclepro.2015.11.034.CrossRefGoogle Scholar
  56. Wang, L., Chu, J., & Wu, J. (2007). Selection of optimum maintenance strategies based on a fuzzy analytic hierarchy process. International Journal of Production Economics, 107(1), 151–163.  https://doi.org/10.1016/j.ijpe.2006.08.005.CrossRefGoogle Scholar
  57. Zander, K., & Feucht, Y. (2017). Consumers’ willingness to pay for sustainable seafood made in Europe. Journal of International Food & Agribusiness Marketing, 30(3), 251–275.  https://doi.org/10.1080/08974438.2017.1413611.CrossRefGoogle Scholar
  58. Zhou, C., Lin, K., Xu, D., Chen, L., Guo, Q., Sun, C., et al. (2018). Near infrared computer vision and neuro-fuzzy model-based feeding decision system for fish in aquaculture. Computers and Electronics in Agriculture, 146, 114–124.  https://doi.org/10.1016/j.compag.2018.02.006.CrossRefGoogle Scholar
  59. Zitzler, E., Deb, K., & Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation, 8(2), 173–195.  https://doi.org/10.1162/106365600568202.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Business Management DepartmentUniversity of CantabriaSantanderSpain
  2. 2.Department of Applied Mathematics and Computer ScienceUniversity of CantabriaSantanderSpain

Personalised recommendations