Integrated versus hierarchical approach for zone delineation and crop planning under uncertainty

  • Víctor M. AlbornozEmail author
  • Marcelo I. Véliz
  • Rodrigo Ortega
  • Virna Ortíz-Araya
S.I.: CLAIO 2016


This paper considers the problem of zone delineation management and crop planning. The problem consists of selecting which crops to plant in different management zones in order to minimize the total costs subjected to a given demand requirement. From a hierarchical point of view, the process starts by generating a partition of an agricultural field into homogeneous management zones, according to a given soil property. Then, the best crop rotation must be assigned to each management zone, applying agronomic practices in a site-specific manner in each zone. This hierarchical approach establishes two decision making levels of planning. At each level, a two-stage stochastic optimization model is proposed, representing the uncertain behavior of a soil property and crop yields by using a finite set of scenarios. Next, we combined them into a new two-stage stochastic program, solving an integrated approach by simultaneously determining an optimal zoning and allocation. Results from a set of evaluated instances showed the relevance of the proposed methodology and the benefits of the hierarchical approach over the integrated one.


Two-stage stochastic program Crop planning Management zones Crop rotation problem Hierarchical production planning Precision agriculture 



The authors would like to thank the anonymous reviewers for their valuable comments and suggestions on earlier versions of this paper. We also appreciate the work performed by research assistants Francisco Peñailillo and Gonzalo Agusto. This research was partially supported by DGIIP from Universidad Técnica Federico Santa María (Grants USM 28.15.20 and PIM 172) and DGIP from Universidad del Bío-Bío (Project DIUBB No. 161418 3/R). The authors also wish to acknowledge the Ibero-American Program for Science and Technology for Development (CYTED 516RT0513).


  1. Adeyemo, J., & Otieno, F. (2010). Differential evolution algorithm for solving multiobjective crop planning model. Agricultural Water Management, 97(6), 848–856.Google Scholar
  2. Ahumada, O., Villalobos, J. R., & Mason, A. N. (2012). Tactical planning of the production and distribution of fresh agricultural products under uncertainty. Agricultural Systems, 112, 17–26.Google Scholar
  3. Alabdulkader, A. M., Al-Amoud, A. I., & Awad, F. S. (2012). Optimization of the cropping pattern in Saudi Arabia using a mathematical programming sector model. Agricultural Economics, 58(2), 56–60.Google Scholar
  4. Albornoz, V. M., Cid-García, N. M., Ortega, R., & Ríos-Solís, Y. A. (2015). A hierarchical planning scheme based on precision agriculture. In L. M. Plà-Aragonés (Ed.), Handbook of operations research in agriculture and the agri-food industry (pp. 129–162). Berlin: Springer.Google Scholar
  5. Albornoz, V. M., & Ñanco, L. J. (2016). An empirical design of a column generation algorithm applied to a management zone delineation problem. In R. J. Fonseca, G. W. Weber, & J. Telhada (Eds.), Computational management science. State of the art 2014. Lecture notes in economics and mathematical systems (Vol. 682, pp. 201–208).Google Scholar
  6. Alfandari, L., Lemalade, J. L., Nagih, A., & Plateau, G. (2011). A MIP flow model for crop-rotation planning in a context of forest sustainable development. Annals of Operations Research, 190(1), 149–164.Google Scholar
  7. Alfandari, L., Plateau, A., & Schepler, X. (2015). A branch-and-price-and-cut approach for sustainable crop rotation planning. European Journal of Operational Research, 241(3), 872–879.Google Scholar
  8. Amini, A. (2015). Application of fuzzy multi-objective programming in optimization of crop production planning. Asian Journal of Agricultural Research, 9(5), 208–222.Google Scholar
  9. Birge, J., & Loveaux, F. (2011). Introduction to Stochastic programming (2nd ed.). New York: Springer.Google Scholar
  10. Blackmore, S., Godwin, R., & Fountas, S. (2000). The interpretation of trends from multiple yield maps. Computers and Electronics in Agriculture, 26(1), 37–51.Google Scholar
  11. Bravo, M., & González, I. (2009). Applying stochastic goal programming: A case study on water use planning. European Journal of Operational Research, 196, 1123–1129.Google Scholar
  12. Carr, P., Carlson, G., Jacobsen, J., Skogley, G., & Nielsenand, E. (1991). Farming soils, not fields: A strategy for increasing fertilizer profitability. Journal of Production Agriculture, 93, 11–20.Google Scholar
  13. Cid-García, N., Albornoz, V., Ríos-Solís, Y., & Ortega, R. (2013). Rectangular shape management zone delineation using integer linear programming. Computers and Electronics in Agriculture, 93, 1–9.Google Scholar
  14. Cid-García, N. M., Bravo-Lozano, A. G., & Ríos-Solís, Y. A. (2014). A crop planning and real-time irrigation method based on site-specific management zones and linear programming. Computers and Electronics in Agriculture, 107, 20–28.Google Scholar
  15. Clark, H. R. (1989). Combinatorial aspects of cropping pattern selection in agriculture. European Journal of Operational Research, 40(1), 70–77.Google Scholar
  16. Costa, A. M., Dos Santos, L. M. R., Alem, D. J., & Santos, R. H. S. (2014). Sustainable vegetable crop supply problem with perishable stocks. Annals of Operations Research, 219, 265–283.Google Scholar
  17. Dantzig, G. (1955). Linear programming under uncertainty. Management Science, 1(3), 197–206.Google Scholar
  18. Detlefsen, N. K., & Jensen, A. L. (2007). Modelling optimal crop sequences using network flows. Agricultural Systems, 94(2), 566–572.Google Scholar
  19. Diker, K., Heermann, D., & Brodahl, M. (2004). Frequency analysis of yield for delineating yield response zones. Precision Agriculture, 5(5), 435–444.Google Scholar
  20. Dogliotti, S., Rossing, W. A. H., & Van Ittersum, M. K. (2003). ROTAT, a tool for systematically generating crop rotations. European Journal of Agronomy, 19(2), 239–250.Google Scholar
  21. Dos Santos, L. M. R., Michelon, P., Arenales, M. N., & Santos, R. H. S. (2011). Crop rotation scheduling with adjacency constraints. Annals of Operations Research, 190(1), 165–180.Google Scholar
  22. Dury, J., Schaller, N., Garcia, F., Reynaud, A., & Bergez, J. E. (2012). Models to support cropping plan and crop rotation decisions. A review. Agronomy for Sustainable Development, 32(2), 567–580.Google Scholar
  23. Filho, A. A., De Oliveira Florentino, H., & Pato, M. V. (2012). A genetic algorithm for crop rotation. In Proceedings of the 1st international conference on operations research and enterprise systems (ICORES) (pp. 454–457). Vilamoura.Google Scholar
  24. Filippi, C., Mansini, R., & Stevanato, E. (2017). Mixed integer linear programming models for optimal crop selection. Computers and Operations Research, 81, 26–39.Google Scholar
  25. Fraisse, C. W., Sudduth, K. A., & Kitchen, N. R. (2001). Delineation of site-specific management zones by unsupervised classification of topographic attributes and soil electrical conductivity. American Society of Agricultural Engineers, 44(1), 155–166.Google Scholar
  26. Franzen, D. W., & Nanna, T. N. (2003). Management zone delineation methods. In: P. C. Robert (Ed.), Proceedings of the 6th international conference on precision agriculture and other precision resources management (pp. 443–457). Minneapolis: American Society of Agronomy.Google Scholar
  27. Gassmann, H. I., & Ziemba, W. T. (2012). Stochastic programming. Applications in finance, energy, planning and logistics. Singapore: World Scientific Publishing Company.Google Scholar
  28. Gujarati, D. N., & Porter, D. C. (2008). Basic econometrics (5th ed.). New York: McGraw-Hill Education.Google Scholar
  29. Haghverdi, A., Leib, B. G., Washington-Allen, R. A., Ayers, P. D., & Buschermohle, M. J. (2015). Perspectives on delineating management zones for variable rate irrigation. Computers and Electronics in Agriculture, 117, 154–167.Google Scholar
  30. Haneveld, W. K. K., & Stegeman, A. W. (2005). Crop succession requirements in agricultural production planning. European Journal of Operational Research, 166(2), 406–429.Google Scholar
  31. Hornung, A., Khosla, R., Reich, R., Inman, D., & Westfall, D. G. (2006). Comparison of site-specific management zones: Soil-color-based and yield-based. Agronomy Journal, 98(2), 407–415.Google Scholar
  32. Itoh, T., Ishii, H., & Nanseki, T. (2003). A model of crop planning under uncertainty in agricultural management. International Journal of Production Economics, 81–82, 555–558.Google Scholar
  33. Jaynes, D. B., Colvin, T. S., & Kaspar, T. C. (2005). Identifying potential soybean management zones from multi-year yield data. Computers and Electronic in Agriculture, 46(1), 309–327.Google Scholar
  34. Jiang, Q., Fu, Q., & Wang, Z. (2011). Study on delineation of irrigation management zones based on management zone analyst software. In D. Li, Y. Liu & Y. Chen (Eds.), Computer and computing technologies in agriculture IV. CCTA 2010. IFIP Advances in Information and Communication Technology (Vol. 346). Heidelberg: Springer.Google Scholar
  35. Lehmann, N., Finger, R., Klein, T., Calanca, P., & Walter, A. (2013). Adapting crop management practices to climate change: Modeling optimal solutions at the field scale. Agricultural Systems, 117, 55–65.Google Scholar
  36. Li, M., & Guo, P. (2015). A coupled random fuzzy two-stage programming model for crop area optimization: A case study of the middle Heihe River basin, China. Agricultural Water Management, 155, 53–66.Google Scholar
  37. Liu, J., Li, Y. P., Huang, G. H., & Zeng, X. T. (2014). A dual-interval fixed-mix stochastic programming method for water resources management under uncertainty. Resources, Conservation and Recycling, 88, 50–66.Google Scholar
  38. Mainuddin, M., Das Grupta, A., & Raj Onta, P. (1996). Optimal crop planning model for an existing groundwater irrigation Project in Thailand. Agricultural Water Management, 33(1), 43–62.Google Scholar
  39. Memmah, M.-M., Lescourret, F., Yao, X., & Lavigne, C. (2015). Metaheuristics for agricultural land use optimization. A review. Agronomy for Sustainable Development, 35(3), 975–998.Google Scholar
  40. Ortega Alvarez, J. F., de Juan Valero, J. A., Tarjuelo Martín-Benito, J. M., & López Mata, E. (2004). MOPECO: An economic optimization model for irrigation water management. Irrigation Science, 23, 61–75.Google Scholar
  41. Ortega, J., Foster, W., & Ortega, R. (2002). Definición de sub-rodales para una silvicultura de precisión: una aplicación del método Fuzzy K-means. Ciencia e Investigación Agraria, 29(1), 35–44.Google Scholar
  42. Ortega, R., & Flores, L. (1999). Introducción al manejo sitio-específico. In R. Ortega & L. Flores (Eds.), Agricultura de Precisión (pp. 13–46). Santiago: Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación Quilamapu, Ministerio de Agricultura.Google Scholar
  43. Ortega, R., & Santibanez, O. A. (2007). Determination of management zones in corn (Zea mays L.) based on soil fertility. Computers and Electronics in Agriculture, 58, 49–59.Google Scholar
  44. Pedroso, M., Taylor, J., Tisseyre, B., Charnomordie, B., & Guillaume, S. (2010). A segmentation algorithm for the delineation of agricultural management zones. Computers and Electronics in Agriculture, 70(1), 199–208.Google Scholar
  45. Rǎdulescu, M., Rǎdulescu, C. Z., & Zbǎganu, G. (2014). A portfolio theory approach to crop planning under environmental constraints. Annals of Operations Research, 29(1), 243–264.Google Scholar
  46. Santos, L. M. R., Munari, P., Costa, A. M., Arenales, M. N., & Santos, R. H. S. (2015). A branch-price-and-cut method for the vegetable crop rotation scheduling problem with minimal plot sizes. European Journal of Operational Research, 245, 581–590.Google Scholar
  47. Sarker, R., & Ray, T. (2009). An improved evolutionary algorithm for solving multi-objective crop planning models. Computers and Electronics in Agriculture, 68(2), 191–199.Google Scholar
  48. Sarker, R. A., Talukdar, S., & Haque, A. F. M. (1997). Determination of optimum crop mix for crop cultivation in Bangladesh. Applied Mathematical Modelling, 21(10), 621–632.Google Scholar
  49. Schepers, J., O’Neill, P., & Shanahan, J. (2004). Agronomic responses of corn hybrids from different eras to deficit and adequate levels of water and nitrogen. American Society of Agronomy, 96(6), 1660–1667.Google Scholar
  50. Toyonaga, T., Itoh, T., & Ishii, H. (2005). A crop planning problem with fuzzy random profit coefficients. Fuzzy Optimization and Decision Making, 4(1), 51–69.Google Scholar
  51. Whelan, B. M., Cupitt, J., & McBratney, A. B. (2003). Practical definition and interpretation of potential management zones in Australian dryland cropping. In P. C. Robert (Ed,), Proceedings of the 6th international conference on precision agriculture and other precision resources management (pp. 395–409). Minneapolis: American Society of Agronomy.Google Scholar
  52. Wiedenmann, S., & Geldermann, J. (2015). Supply planning for processors of agricultural raw materials. European Journal of Operational Research, 242, 606–619.Google Scholar
  53. Xiaohu, Z., Li, J., Xiaolei, Q., Jianxiu, Q., Juan, W., & Yan, Z. (2016). An improved method of delineating rectangular management zones using a semivariogram-based technique. Computers and Electronics in Agriculture, 121, 74–83.Google Scholar
  54. Zeng, X., Kang, S., Li, F., Zhang, L., & Guo, P. (2010). Fuzzy multi-objective linear programming applying to crop area planning. Agricultural Water Management, 98, 134–142.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de IndustriasUniversidad Técnica Federico Santa MaríaSantiagoChile
  2. 2.Departamento de Ingeniería ComercialUniversidad Técnica Federico Santa MaríaSantiagoChile
  3. 3.Departamento de Gestión EmpresarialUniversidad del Bío-BíoChillánChile

Personalised recommendations