Fast and efficient computation of directional distance estimators

  • Cinzia Daraio
  • Léopold Simar
  • Paul W. WilsonEmail author
S.I.: Data Envelopment Analysis: Four Decades On


Directional distances provide useful, flexible measures of technical efficiency of production units relative to the efficient frontier of the attainable set in input-output space. In addition, the additive nature of directional distances permits negative input or outputs quantities. The choice of the direction allows analysis of different strategies for the units attempting to reach the efficient frontier. Simar et al. (Eur J Oper Res 220:853–864, 2012) and Simar and Vanhems (J Econom 166:342–354, 2012) develop asymptotic properties of full-envelopment, FDH and DEA estimators of directional distances as well as robust order-m and order-\(\alpha \) directional distance estimators. Extensions of these estimators to measures conditioned on environmental variables Z are also available (e.g., see Daraio and Simar in Eur J Oper Res 237:358–369, 2014). The resulting estimators have been shown to share the properties of their corresponding radial measures. However, to date the algorithms proposed for computing the directional distance estimates suffer from various numerical drawbacks (Daraio and Simar in Eur J Oper Res 237:358–369, 2014). In particular, for the order-m versions (conditional and unconditional) only approximations, based on Monte-Carlo methods, have been suggested, involving additional computational burden. In this paper we propose a new fast and efficient method to compute exact values of the directional distance estimates for all the cases (full and partial frontier cases, unconditional or conditional to external factors), that overcome all previous difficulties. This new method is illustrated on simulated and real data sets. Matlab code for computation is provided in an “Appendix”.


Directional distances Conditional efficiency Robust frontiers Environmental factors Nonparametric methods 



  1. Aragon, Y., Daouia, A., & Thomas-Agnan, C. (2005). Nonparametric frontier estimation: A conditional quantile-based approach. Econometric Theory, 21, 358–389.Google Scholar
  2. Bădin, L., Daraio, C., & Simar, L. (2010). Optimal bandwidth selection for conditional efficiency measures: A data-driven approach. European Journal of Operational Research, 201(2), 633–640.Google Scholar
  3. Bădin, L., Daraio, C., & Simar, L. (2012). How to measure the impact of environmental factors in a nonparametric production model. European Journal of Operational Research, 223(3), 818–833.Google Scholar
  4. Bădin, L., Daraio, C., & Simar, L. (2014). Explaining inefficiency in nonparametric production models: The state of the art. Annals of Operations Research, 214(1), 5–30.Google Scholar
  5. Bădin, L., Daraio, C., & Simar, L. (2018). A bootstrap approach for bandwidth selection in estimating conditional efficiency, TR n. 02 2018, DIAG, Sapienza university of Rome.Google Scholar
  6. Balez̆entis, T., & De Witte, K. (2015). One- and multi-directional conditional efficiency measurement: Efficiency in Lithuanian family farms. European Journal of Operational Research, 245(2), 612–622.Google Scholar
  7. Broekel, T. (2012). Collaboration intensity and regional innovation efficiency in Germany: A conditional efficiency approach. Industry and Innovation, 19(2), 155–179.Google Scholar
  8. Cazals, C., Florens, J. P., & Simar, L. (2002). Nonparametric frontier estimation: A robust approach. Journal of Econometrics, 106, 1–25.Google Scholar
  9. Chambers, R. G., Chung, Y. H., & Färe, R. (1996). Benefit and distance functions. Journal of Economic Theory, 70, 407–419.Google Scholar
  10. Chambers, R. G., Chung, Y. H., & Färe, R. (1998). Profit, directional distance functions and Nerlovian efficiency. Journal of Optimization Theory and Applications, 98, 351–364.Google Scholar
  11. Charnes, A. W., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. Journal of Operational Research, 2, 429–444.Google Scholar
  12. Cordero, J. M., Pedraja-Chaparro, F., Pisaflores, E. C., & Polo, C. (2017). Efficiency assessment of Portuguese municipalities using a conditional nonparametric approach. Journal of Productivity Analysis, 48(1), 1–24.Google Scholar
  13. Cordero, J. M., Santin, D., & Simancas, R. (2017). Assessing European primary school performance through a conditional nonparametric model. Journal of the Operational Research Society, 68(4), 364–376.Google Scholar
  14. Daouia, A., Florens, J. P., & Simar, L. (2010). Frontier estimation and extreme values theory. Bernoulli, 16(4), 1039–1063.Google Scholar
  15. Daouia, A., Florens, J. P., & Simar, L. (2012). Regularization of non-parametric frontier estimators. Journal of Econometrics, 168, 285–299.Google Scholar
  16. Daouia, A., & Gijbels, I. (2011). Robustness and inference in nonparametric partial frontier modeling. Journal of Econometrics, 161, 147–165.Google Scholar
  17. Daouia, A., & Gijbels, I. (2011). Estimating frontier cost models using extremiles. In I. Van Keilegom & P. W. Wilson (Eds.), Exploring research frontiers in contemorary statistics and econometrics (pp. 65–81). Berlin: Sprinter.Google Scholar
  18. Daouia, A., & Ruiz-Gazen, A. (2006). Robust nonparametric frontier estimators: Qualitative robustness and influence function. Statistica Sinica, 16, 1233–1253.Google Scholar
  19. Daouia, A., & Simar, L. (2007). Nonparametric efficiency analysis: A multivariate conditional quantile approach. Journal of Econometrics, 140, 375–400.Google Scholar
  20. Daouia, A., Simar, L., & Wilson, P. W. (2017). Measuring firm performance using nonparametric quantile-type distances. Econometric Review, 36(1–3), 156–181.Google Scholar
  21. Daraio, C., & Simar, L. (2005). Introducing environmental variables in nonparametric frontier models: A probabilistic approach. Journal of Productivity Analysis, 24(1), 93–121.Google Scholar
  22. Daraio, C., & Simar, L. (2007). Advanced robust and nonparametric nethods in efficiency analysis: Methodology and applications. New-York: Springer.Google Scholar
  23. Daraio, C., & Simar, L. (2014). Directional distances and their robust versions: Computational and testing issues. European Journal of Operational Research, 237, 358–369.Google Scholar
  24. Daraio, C., Simar, L., & Wilson, P. W. (2018). Central limit theorems for conditional efficiency measures and tests of the “separability” condition in nonparametric, two-stage models of production. in press, The Econometrics Journal.Google Scholar
  25. Debreu, G. (1951). The coefficient of resource utilization. Econometrica, 19(3), 273–292.Google Scholar
  26. Deprins, D., Simar, L., & Tulkens, H. (1984). Measuring labor inefficiency in post offices. In M. Marchand, P. Pestieau, & H. Tulkens (Eds.), The performance of public enterprises: Concepts and measurements (pp. 243–267). Amsterdam: North-Holland.Google Scholar
  27. De Witte, K., & Geys, B. (2011). Evaluating efficient public good provision: Theory and evidence from a generalised conditional efficiency model for public libraries. Journal of urban economics, 69(3), 319–327.Google Scholar
  28. Färe, R., & Grosskopf, S. (2004). Efficiency and productivity: New directions. Boston, MA: Kluwer Academic Publishers.Google Scholar
  29. Färe, R., Grosskopf, S., & Margaritis, D. (2008). Efficiency and productivity: Malmquist and more. In H. Fried, C. A. Knox Lovell, & S. Schmidt (Eds.), The measurement of productive efficiency (Vol. 2). Oxford: Oxford University Press.Google Scholar
  30. Farrell, M. J. (1957). The measurement of the productive efficiency. Journal of the Royal Statistical Society, Series A, CXX, Part, 3, 253–290.Google Scholar
  31. Ferreira, D. C., Marques, R. C., & Nunes, A. M. (2018). Economies of scope in the health sector: The case of Portuguese hospitals. European Journal of Operational Research, 266(2), 716–735.Google Scholar
  32. Florens, J. P., Simar, L., & Van Keilegom, I. (2014). Frontier estimation in nonparametric location-scale models. Journal of Econometrics, 178, 456–470.Google Scholar
  33. Fuentes, R., Torregrosa, T., & Ballenilla, E. (2015). Conditional order-\(m\) efficiency of wastewater treatment plants: The role of environmental factors. Water, 7(10), 5503–5524.Google Scholar
  34. Guerrini, A., Romano, G., Mancuso, F., & Carosi, L. (2016). Identifying the performance drivers of wastewater treatment plants through conditional order-m efficiency analysis. Utilities Policy, 42, 20–31.Google Scholar
  35. Haelermans, C., & De Witte, K. (2012). The role of innovations in secondary school performance: Evidence from a conditional efficiency model. European Journal of Operational Research, 223(2), 541–549.Google Scholar
  36. Halkos, G. E., & Managi, S. (2016). Measuring the effect of economic growth on countries an environmental efficiency: A conditional directional distance function approach. Environmental and Resource Economics, 1–23.Google Scholar
  37. Halkos, G. E., Stern, D. I., & Tzeremes, N. G. (2016). Population, economic growth and regional environmental inefficiency: Evidence from US states. Journal of cleaner production, 112, 4288–4295.Google Scholar
  38. Halkos, G. E., Sundström, A., & Tzeremes, N. G. (2015). Regional environmental performance and governance quality: A nonparametric analysis. Environmental Economics and Policy Studies, 17(4), 621–644.Google Scholar
  39. Halkos, G. E., & Tzeremes, N. G. (2013a). A conditional directional distance function approach for measuring regional environmental efficiency: Evidence from UK regions. European Journal of Operational Research, 227(1), 182–189.Google Scholar
  40. Halkos, G. E., & Tzeremes, N. G. (2013b). National culture and eco-efficiency: An application of conditional partial nonparametric frontiers. Environmental Economics and Policy Studies, 15(4), 423–441.Google Scholar
  41. Halkos, G. E., & Tzeremes, N. G. (2014). Public sector transparency and countries: Environmental performance: A nonparametric analysis. Resource and Energy Economics, 38, 19–37.Google Scholar
  42. Jeong, S. O., Park, B. U., & Simar, L. (2010). Nonparametric conditional efficiency measures: Asymptotic properties. Annals of Operations Research, 173, 105–122.Google Scholar
  43. Kneip, A., Simar, L., & Wilson, P. W. (2008). Asymptotics and consistent bootstraps for DEA estimators in non-parametric frontier models. Econometric Theory, 24, 1663–1697.Google Scholar
  44. Li, Q., Lin, J., & Racine, J. S. (2013). Optimal bandwidth selection for nonparametric conditional distribution and quantile functions. Journal of Business & Economic Statistics, 31(1), 57–65.Google Scholar
  45. Mallick, S., Matousek, R., & Tzeremes, N. G. (2016). Financial development and productive inefficiency: A robust conditional directional distance function approach. Economics Letters, 145, 196–201.Google Scholar
  46. Manello, A. (2017). Productivity growth, environmental regulation and win-win opportunities: The case of chemical industry in Italy and Germany. European journal of operational research, 262(2), 733–743.Google Scholar
  47. Matousek, R., & Tzeremes, N. G. (2016). CEO compensation and bank efficiency: An application of conditional nonparametric frontiers. European Journal of Operational Research, 251(1), 264–273.Google Scholar
  48. Minviel, J. J., & De Witte, K. (2017). The influence of public subsidies on farm technical efficiency: A robust conditional nonparametric approach. European Journal of Operational Research, 259(3), 1112–1120.Google Scholar
  49. Park, B. U., Jeong, S.-O., & Simar, L. (2010). Asymptotic distribution of conical-hull estimators of directional edges. Annals of Statistics, 38(6), 1320–1340.Google Scholar
  50. Park, B. U., Simar, L., & Weiner, C. (2000). The FDH estimator for productivity efficiency scores: Asymptotic properties. Econometric Theory, 16, 855–877.Google Scholar
  51. Serra, T., & Lansink, A. O. (2014). Measuring the impacts of production risk on technical efficiency: A state-contingent conditional order-m approach. European Journal of Operational Research, 239(1), 237–242.Google Scholar
  52. Shephard, R. W. (1970). Theory of cost and production function. Princeton, NJ: Princeton University Press.Google Scholar
  53. Simar, L. (2003). Detecting outliers in frontiers models: A simple approach. Journal of Productivity Analysis, 20, 391–424.Google Scholar
  54. Simar, L., & Vanhems, A. (2012). Probabilistic characterization of directional distances and their robust versions. Journal of Econometrics, 166, 342–354.Google Scholar
  55. Simar, L., Vanhems, A., & Van Keilegom, I. (2016). Unobserved heterogeneity and endogeneity in nonparametric frontier estimation. Journal of Econometrics, 190, 360–373.Google Scholar
  56. Simar, L., Vanhems, A., & Wilson, P. W. (2012). Statistical inference with DEA estimators of directional distances. European Journal of Operational Research, 220, 853–864.Google Scholar
  57. Simar, L., & Wilson, P. W. (2007). Estimation and inference in two-stage, semi-parametric models of production processes. Journal of Econometrics, 136(1), 31–64.Google Scholar
  58. Simar, L., & Wilson, P. W. (2011). Inference by the \(m\) out of \(n\) bootstrap in nonparametric frontier models. Journal of Productivity Analysis, 36, 33–53.Google Scholar
  59. Simar, L., & Wilson, P. W. (2013). Estimation and inference in nonparametric frontier models: Recent developements and perspectives. Foundations and Trends in Econometrics, 5, 183–337.Google Scholar
  60. Simar, L., & Wilson, P. W. (2015). Statistical approaches for nonparametric frontier models: A guided tour. International Statistical Review, 83, 77–110.Google Scholar
  61. Tzeremes, N. G. (2015). Efficiency dynamics in Indian banking: A conditional directional distance approach. European Journal of Operational Research, 240(3), 807–818.Google Scholar
  62. Varabyova, Y., Blankart, C. R., Torbica, A., & Schreyögg, J. (2016). Comparing the efficiency of hospitals in Italy and Germany: Nonparametric conditional approach based on partial frontier. Health Care Management Science.
  63. Varabyova, Y., & Schreyögg, J. (2017). Integrating quality into nonparametric analysis of efficiency: A simulation comparison of popular methods. Annals of Operations Reseacrh.
  64. Verschelde, M., & Rogge, N. (2012). An environment-adjusted evaluation of citizen satisfaction with local police effectiveness: Evidence from a conditional data envelopment analysis approach. European Journal of Operational Research, 223(1), 214–225.Google Scholar
  65. Wilson, P. W. (2018). Dimension reduction in nonparametric models of production. European Journal of Operational Research, 267, 349–367.Google Scholar
  66. Zschille, M. (2015). Consolidating the water industry: An analysis of the potential gains from horizontal integration in a conditional efficiency framework. Journal of Productivity Analysis, 44(1), 97–114.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer, Control and Management Engineering A. Ruberti (DIAG)Sapienza University of RomeRomeItaly
  2. 2.Institut de Statistique, Biostatistique, et Sciences ActuariellesUniversité Catholique de Louvain-la-NeuveLouvain-la-NeuveBelgium
  3. 3.Department of Economics and School of Computing, Division of Computer ScienceClemson UniversityClemsonUSA

Personalised recommendations