Advertisement

Fast and accurate computation of the distribution of sums of dependent log-normals

  • Zdravko I. BotevEmail author
  • Robert Salomone
  • Daniel Mackinlay
Original Research

Abstract

We present a new Monte Carlo methodology for the accurate estimation of the distribution of the sum of dependent log-normal random variables. The methodology delivers statistically unbiased estimators for three distributional quantities of significant interest in finance and risk management: the left tail, or cumulative distribution function; the probability density function; and the right tail, or complementary distribution function of the sum of dependent log-normal factors. For the right tail our methodology delivers a fast and accurate estimator in settings for which existing methodology delivers estimators with large variance that tend to underestimate the true quantity of interest. We provide insight into the computational challenges using theory and numerical experiments, and explain their much wider implications for Monte Carlo statistical estimators of rare-event probabilities. In particular, we find that theoretically strongly efficient estimators should be used with great caution in practice, because they may yield inaccurate results in the prelimit. Further, this inaccuracy may not be detectable from the output of the Monte Carlo simulation, because the simulation output may severely underestimate the true variance of the estimator.

Keywords

Log-normal distribution Lognormal Rare-event simulation Logarithmic efficiency Large deviations Conditional Monte Carlo Quasi Monte Carlo Second-order efficiency 

Notes

Acknowledgements

We would like to thank Patrick Laub for his valuable feedback and comments on earlier drafts of this work and for sharing his computer code for pdf estimation. Zdravko Botev has been supported by the Australian Research Council Grant DE140100993. Robert Salomone has been supported by the Australian Research Council Centre of Excellence for Mathematical & Statistical Frontiers (ACEMS), under Grant No. CE140100049.

References

  1. Ambartzumian, R., Der Kiureghian, A., Ohaniana, V., & Sukiasiana, H. (1998). Multinormal probability by sequential conditioned importance sampling: Theory and application. Probabilistic Engineering Mechanics, 13(4), 299–308.CrossRefGoogle Scholar
  2. Asmussen, S. (2018). Conditional Monte Carlo for sums, with applications to insurance and finance. Annals of Actuarial Science, 2018, 1–24.CrossRefGoogle Scholar
  3. Asmussen, S., & Binswanger, K. (1997). Simulation of ruin probabilities for subexponential claims. Astin Bulletin, 27(02), 297–318.CrossRefGoogle Scholar
  4. Asmussen, S., Blanchet, J., Juneja, S., & Rojas-Nandayapa, L. (2011). Efficient simulation of tail probabilities of sums of correlated lognormals. Annals of Operations Research, 189(1), 5–23.CrossRefGoogle Scholar
  5. Asmussen, S., Goffard, P. O., & Laub, P. J. (2016). Orthonormal polynomial expansions and lognormal sum densities. arXiv preprint arXiv:1601.01763.
  6. Asmussen, S., Jensen, J. L., & Rojas-Nandayapa, L. (2014). On the Laplace transform of the lognormal distribution. Methodology and Computing in Applied Probability, 18, 441–458.CrossRefGoogle Scholar
  7. Asmussen, S., Jensen, J. L., & Rojas-Nandayapa, L. (2016). Exponential family techniques for the lognormal left tail. Scandinavian Journal of Statistics, 43, 774–787.CrossRefGoogle Scholar
  8. Asmussen, S., & Kroese, D. P. (2006). Improved algorithms for rare event simulation with heavy tails. Advances in Applied Probability, 38(02), 545–558.CrossRefGoogle Scholar
  9. Asmussen, S., & Rojas-Nandayapa, L. (2008). Asymptotics of sums of lognormal random variables with gaussian copula. Statistics & Probability Letters, 78(16), 2709–2714.CrossRefGoogle Scholar
  10. Bacry, E., Kozhemyak, A., & Muzy, J. F. (2013). Log-normal continuous cascade model of asset returns: Aggregation properties and estimation. Quantitative Finance, 13(5), 795–818.CrossRefGoogle Scholar
  11. Blanchet, J., Juneja, S., & Rojas-Nandayapa, L. (2008). Efficient tail estimation for sums of correlated lognormals. In Proceedings of the 2008 winter simulation conference, IEEE, pp. 607–614.Google Scholar
  12. Botev, Z. I. (2016). The normal law under linear restrictions: Simulation and estimation via minimax tilting. Journal of the Royal Statistical Society: Series B (Statistical Methodology),.  https://doi.org/10.1111/rssb.12162.Google Scholar
  13. Botev, Z., & L’Ecuyer, P. (2017). Accurate computation of the right tail of the sum of dependent log-normal variates. In WSC 2017-winter simulation conference.Google Scholar
  14. Doerr, C., Blenn, N., & Van Mieghem, P. (2013). Lognormal infection times of online information spread. PLoS ONE, 8(5), e64349.CrossRefGoogle Scholar
  15. Dufresne, D. (2004). The log-normal approximation in financial and other computations. Advances in Applied Probability, 36(3), 747–773.CrossRefGoogle Scholar
  16. Embrechts, P., Puccetti, G., Rüschendorf, L., Wang, R., & Beleraj, A. (2014). An academic response to basel 3.5. Risks, 2(1), 25–48.CrossRefGoogle Scholar
  17. Fenton, L. (1960). The sum of log-normal probability distributions in scatter transmission systems. IRE Transactions on Communications Systems, 8(1), 57–67.CrossRefGoogle Scholar
  18. Gubner, J. A. (2006). A new formula for lognormal characteristic functions. IEEE Transactions on Vehicular Technology, 55(5), 1668–1671.CrossRefGoogle Scholar
  19. Gulisashvili, A., & Tankov, P. (2016). Tail behavior of sums and differences of log-normal random variables. Bernoulli, 22(1), 444–493.CrossRefGoogle Scholar
  20. Hashorva, E., & Hüsler, J. (2003). On multivariate Gaussian tails. Annals of the Institute of Statistical Mathematics, 55(3), 507–522.CrossRefGoogle Scholar
  21. Hcine, M. B., & Bouallegue, R. (2015). Highly accurate log skew normal approximation to the sum of correlated lognormals. arXiv preprint arXiv:1501.02347.
  22. Kortschak, D., & Hashorva, E. (2013). Efficient simulation of tail probabilities for sums of log-elliptical risks. Journal of Computational and Applied Mathematics, 247, 53–67.CrossRefGoogle Scholar
  23. Kortschak, D., & Hashorva, E. (2014). Second order asymptotics of aggregated log-elliptical risk. Methodology and Computing in Applied Probability, 16(4), 969–985.CrossRefGoogle Scholar
  24. Kroese, D. P., Taimre, T., & Botev, Z. I. (2011). Handbook of Monte Carlo methods (Vol. 706). New York: Wileys.CrossRefGoogle Scholar
  25. Laub, P. J., Asmussen, S., Jensen, J. L., & Rojas-Nandayapa, L. (2016). Approximating the Laplace transform of the sum of dependent lognormals. Advances in Applied Probability, 48(A), 203–215.CrossRefGoogle Scholar
  26. Limpert, E., Stahel, W. A., & Abbt, M. (2001). Log-normal distributions across the sciences: Keys and clues. BioScience, 51(5), 341–352.CrossRefGoogle Scholar
  27. McNeil, A., Frey, R., & Embrechts, P. (2015). Quantitative risk management: Concepts, techniques and tools. Princeton: Princeton University Press.Google Scholar
  28. Milevsky, M. A., & Posner, S. E. (1998). Asian options, the sum of lognormals, and the reciprocal gamma distribution. Journal of Financial and Quantitative Analysis, 33(03), 409–422.CrossRefGoogle Scholar
  29. Nguyen, Q. H., & Robert, C. Y. (2014). New efficient estimators in rare event simulation with heavy tails. Journal of Computational and Applied Mathematics, 261, 39–47.CrossRefGoogle Scholar
  30. Rached, N. B., Kammoun, A., Alouini, M.-S., & Tempone, R. (2016). Unified importance sampling schemes for efficient simulation of outage capacity over generalized fading channels. IEEE Journal of Selected Topics in Signal Processing, 10(2), 376–388.CrossRefGoogle Scholar
  31. Zuanetti, D., Diniz, C., & Leite, J. (2006). A lognormal model for insurance claims data. REVSTAT-Statistical Journal, 4(2), 131–142.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zdravko I. Botev
    • 1
    Email author
  • Robert Salomone
    • 1
    • 2
  • Daniel Mackinlay
    • 1
  1. 1.School of Mathematics and StatisticsThe University of New South WalesSydneyAustralia
  2. 2.Department of MathematicsThe University of QueenslandBrisbaneAustralia

Personalised recommendations