Advertisement

Computations of volumes and Ehrhart series in four candidates elections

  • Winfried Bruns
  • Bogdan IchimEmail author
  • Christof Söger
Original Research
  • 10 Downloads

Abstract

We describe several analytical results obtained in four candidates social choice elections under the assumption of the Impartial Anonymous Culture. These include the Condorcet and Borda paradoxes, as well as the Condorcet efficiency of plurality voting with runoff. The computations are done by Normaliz. It finds precise probabilities as volumes of polytopes and counting functions encoded as Ehrhart series of polytopes.

Keywords

Rational polytope Volume Ehrhart series Social choice Condorcet paradox Borda paradox 

Mathematics Subject Classification

52B20 91B12 

Notes

Acknowledgements

The authors like to thank Achill Schürmann for several test examples that were used during the development of Normaliz. They are also grateful to the anonymous referees for helpful comments. Bogdan Ichim was partially supported by a grant of Romanian Ministry of Research and Innovation, CNCS - UEFISCDI, project number PN-III-P4-ID-PCE-2016-0157, within PNCDI III.

References

  1. Abbott, J., Bigatti, A. M., & Lagorio, G. (2018). CoCoA-5: A system for doing Computations in Commutative Algebra. http://cocoa.dima.unige.it.
  2. Almendra, V., & Ichim, B. (2018). jNormaliz: A graphical interface for Normaliz. www.math.uos.de/normaliz.
  3. Avis, D. (2018). lrs: A revised implementation of the reverse search vertex enumeration algorithm. http://cgm.cs.mcgill.ca/~avis/C/lrs.html.
  4. Baldoni, V., Berline, N., De Loera, J. A., Dutra, B., Köppe, M., Moreinis, S., Pinto, G., Vergne, M., & Wu, J. (2013). A user’s guide for LattE integrale v1.7.2, 2013. Software package LattE is available at http://www.math.ucdavis.edu/~latte/.
  5. Baldoni, V., Berline, N., De Loera, J. A., Köppe, M., & Vergne, M. (2011). How to integrate a polynomial over a simplex. Mathematics of Computation, 80, 297–325.CrossRefGoogle Scholar
  6. Baldoni, V., Berline, N., De Loera, J. A., Köppe, M., & Vergne, M. (2012). Computation of the highest coefficients of weighted Ehrhart quasi-polynomials of rational polyhedra. Foundations of Computational Mathematics, 12, 435–469.CrossRefGoogle Scholar
  7. Brandt, F., Geist, C., & Strobel, M. (2016). Analyzing the practical relevance of voting paradoxes via Ehrhart theory, computer simulations, and empirical data. In Proceedings of the 2016 international conference on autonomous agents and multiagent systems (pp. 385–393).Google Scholar
  8. Brandt, F., Hofbauer, J., & Strobel, M. (2019). Exploring the no-show paradox for condorcet extensions using Ehrhart theory and computer simulations. In Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems (AAMAS). IFAAMAS.Google Scholar
  9. Bruns, W., & Gubeladze, J. (2009). Polytopes, rings and K-theory. Berlin: Springer.Google Scholar
  10. Bruns, W., Hemmecke, R., Ichim, B., Köppe, M., & Söger, C. (2011). Challenging computations of Hilbert bases of cones associated with algebraic statistics. Experimental Mathematics, 20, 25–33.CrossRefGoogle Scholar
  11. Bruns, W., & Ichim, B. (2010). Normaliz: Algorithms for affine monoids and rational cones. Journal of Algebra, 324, 1098–1113.CrossRefGoogle Scholar
  12. Bruns, W., & Ichim, B. (2018). Polytope volume by descent in the face lattice and applications in social choice. Preprint arXiv:1807.02835.
  13. Bruns, W., Ichim, B., Römer, T., Sieg, R., & Söger, C. (2018). Normaliz: Algorithms for rational cones and affine monoids. http://normaliz.uos.de.
  14. Bruns, W., Ichim, B., & Söger, C. (2016). The power of pyramid decomposition in Normaliz. Journal of Symbolic Computation, 74, 513–536.CrossRefGoogle Scholar
  15. Bruns, W., & Koch, R. (2001). Computing the integral closure of an affine semigroup. Universitatis Iagellonicae Acta Mathematica, 39, 59–70.Google Scholar
  16. Bruns, W., Sieg, R., & Söger, C. (2017). Normaliz 2013–2016. In G. Böckle, W. Decker, & G. Malle (Eds.), Algorithmic and experimental methods in algebra, geometry, and number theory (pp. 123–146). Cham: Springer.CrossRefGoogle Scholar
  17. Bruns, W., & Söger, C. (2015). Generalized Ehrhart series and integration in Normaliz. Journal of Symbolic Computation, 68, 75–86.CrossRefGoogle Scholar
  18. Chevalier de Borda, J.-C. (1781). Mémoire sur les élections au scrutin. Histoire de’Académie Royale Des Science, 102, 657–665.Google Scholar
  19. De Loera, J. A., Dutra, B., Köppe, M., Moreinis, S., Pinto, G., & Wu, J. (2013). Software for exact integration of polynomials over polyhedra. Computational Geometry, 46, 232–252.CrossRefGoogle Scholar
  20. El Ouafdi, A., Lepelley, D., & Smaoui, H. (2018). Probabilities of electoral outcomes in four-candidate elections. Preprint https://doi.org/10.13140/RG.2.2.27775.87201.
  21. Gehrlein, W. V. (2001). Condorcet winners on four candidates with anonymous voters. Economics Letters, 71, 335–340.CrossRefGoogle Scholar
  22. Gehrlein, W. V., & Fishburn, P. (1976). Condorcet’s paradox and anonymous preference profiles. Public Choice, 26, 1–18.CrossRefGoogle Scholar
  23. Gehrlein, W. V., & Lepelley, D. (2010). On the probability of observing Borda’s paradox. Social Choice and Welfare, 35, 1–23.CrossRefGoogle Scholar
  24. Gehrlein, W. V., & Lepelley, D. (2011). Voting paradoxes and group coherence. Berlin: Springer.CrossRefGoogle Scholar
  25. Gehrlein, W. V., & Lepelley, D. (2017). Elections, voting rules and paradoxical outcomes. Berlin: Springer.CrossRefGoogle Scholar
  26. Lepelley, D., Louichi, A., & Smaoui, H. (2008). On Ehrhart polynomials and probability calculations in voting theory. Social Choice and Welfare, 30, 363–383.CrossRefGoogle Scholar
  27. Marquis de Condorcet, N. (1785). Éssai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix. Paris: Imprimerie Royale.Google Scholar
  28. R Core Team. (2013). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org/
  29. Schürmann, A. (2013). Exploiting polyhedral symmetries in social choice. Social Choice and Welfare, 40, 1097–1110.CrossRefGoogle Scholar
  30. Wilson, M. C., & Pritchard, G. (2007). Probability calculations under the IAC hypothesis. Mathematical Social Sciences, 54, 244–256.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.FB Mathematik/InformatikUniversität OsnabrückOsnabrückGermany
  2. 2.Simion Stoilow Institute of Mathematics of the Romanian AcademyBucharestRomania

Personalised recommendations