Annals of Operations Research

, Volume 276, Issue 1–2, pp 155–168 | Cite as

An improvement on parametric \(\nu \)-support vector algorithm for classification

  • Saeed KetabchiEmail author
  • Hossein Moosaei
  • Mohamad Razzaghi
  • Panos M. Pardalos
S.I.: Computational Biomedicine


One effective technique that has recently been considered for solving classification problems is parametric \(\nu \)-support vector regression. This method obtains a concurrent learning framework for both margin determination and function approximation and leads to a convex quadratic programming problem. In this paper we introduce a new idea that converts this problem into an unconstrained convex problem. Moreover, we propose an extension of Newton’s method for solving the unconstrained convex problem. We compare the accuracy and efficiency of our method with support vector machines and parametric \(\nu \)-support vector regression methods. Experimental results on several UCI benchmark data sets indicate the high efficiency and accuracy of this method.


Classification Support vector regression \(\nu \)-support vector machines Parametric \(\nu \)-support vector Generalized Newton method Parametric margin 


  1. Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D., et al. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proceedings of the National Academy of Sciences, 96(12), 6745–6750.CrossRefGoogle Scholar
  2. Bennett, K. P., & Bredensteiner, E. J. (2000). Duality and geometry in SVM classifiers. In Proceedings of the seventeenth international conference on machine learning (pp. 57–64). San Francisco.Google Scholar
  3. Boser, B. E., Guyon, I. M., & Vapnik. V. N. (1992). A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on computational learning theory (COLT ’92) (pp. 144–152). ACM, New York, NY, USA.Google Scholar
  4. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. New York: Cambridge University Press.CrossRefGoogle Scholar
  5. Cao, L., & Tay, E. F. (2001). Financial forecasting using support vector machines. Neural Computing and Applications, 10(2), 184–192.CrossRefGoogle Scholar
  6. Chen, X., Yang, J., & Liang, J. (2012a). A flexible support vector machine for regression. Neural Computing and Applications, 21(8), 2005–2013.CrossRefGoogle Scholar
  7. Chen, X., Yang, J., Liang, J., & Ye, Q. (2012b). Smooth twin support vector regression. Neural Computing and Applications, 21(3), 505–513.CrossRefGoogle Scholar
  8. Clarke, F. (1990). Optimization and nonsmooth analysis. Philadelphia: Society for Industrial and Applied Mathematics.CrossRefGoogle Scholar
  9. Deng, N., Tian, Y., & Zhang, C. (2012). Support vector machines: Optimization based theory, algorithms, and extensions (1st ed.). Boca Raton: Chapman and Hall/CRC.CrossRefGoogle Scholar
  10. Hao, P. Y. (2010). New support vector algorithms with parametric insensitive/margin model. Neural Networks, 23(1), 60–73.CrossRefGoogle Scholar
  11. Hiriart-Urruty, J.-B., Strodiot, J.-J., & Nguyen, V. H. (1984). Generalized hessian matrix and second-order optimality conditions for problems with \(C^{1,1}\) data. Applied Mathematics and Optimization, 11(1), 43–56.CrossRefGoogle Scholar
  12. Hong, Z.-Q., & Yang, J.-Y. (1991). Optimal discriminant plane for a small number of samples and design method of classifier on the plane. Pattern Recognition, 24(4), 317–324.CrossRefGoogle Scholar
  13. Ivanciuc, O. (2007). Reviews in computational chemistry. London: Wiley.Google Scholar
  14. Joachims, T. (1998). Text categorization with support vector machines: Learning with many relevant features. In Proceedings of the 10th European conference on machine learning, ECML’98 (pp. 137–142). Springer, London, UK.Google Scholar
  15. Ketabchi, S., & Moosaei, H. (2012). Minimum norm solution to the absolute value equation in the convex case. Journal of Optimization Theory and Applications, 154(3), 1080–1087.CrossRefGoogle Scholar
  16. Lee, Y.-J., & Mangasarian, O. (2001). SSVM: A smooth support vector machine for classification. Computational Optimization and Applications, 20(1), 5–22.CrossRefGoogle Scholar
  17. Lichman, M. (2013). UCI machine learning repository.
  18. Osuna, E., Freund, R., & Girosit, F. (1997). Training support vector machines: An application to face detection. In Proceedings of the 1997 IEEE computer society conference on computer vision and pattern recognition (pp. 130–136).Google Scholar
  19. Pappu, V., Panagopoulos, O. P., Xanthopoulos, P., & Pardalos, P. M. (2015). Sparse proximal support vector machines for feature selection in high dimensional datasets. Expert Systems with Applications, 42(23), 9183–9191.CrossRefGoogle Scholar
  20. Pardalos, P. M., Ketabchi, S., & Moosaei, H. (2014). Minimum norm solution to the positive semidefinite linear complementarity problem. Optimization, 63(3), 359–369.CrossRefGoogle Scholar
  21. Pontil, M., Rifkin, R., & Evgeniou, T. (1998). From regression to classification in support vector machines. Technical Report. Massachusetts Institute of Technology, Cambridge, MA, USA.Google Scholar
  22. Resende, M. G. C., & Pardalos, P. M. (2002). Handbook of applied optimization. Oxford: Oxford University Press.Google Scholar
  23. Ripley, B. (1996). Pattern recognition and neural networks datasets collection.
  24. Schölkopf, B., & Smola, A. J. (2001). Learning with kernels: Support vector machines, regularization, optimization, and beyond. Cambridge: MIT Press.Google Scholar
  25. Schölkopf, B., Smola, A. J., Williamson, R. C., & Bartlett, P. L. (2000). New support vector algorithms. Neural Computation, 12(5), 1207–1245.CrossRefGoogle Scholar
  26. Vapnik, V. (1998). Statistical learning theory. New York: Wiley.Google Scholar
  27. Vapnik, V., & Chervonenkis, A. (1974). Theory of pattern recognition. Moscow: Nauka. (in Russian).Google Scholar
  28. Wang, Z., Shao, Y., & Wu, T. (2014). Proximal parametric-margin support vector classifier and its applications. Neural Computing and Applications, 24(3–4), 755–764.CrossRefGoogle Scholar
  29. Xanthopoulos, P., Guarracino, M. R., & Pardalos, P. M. (2014). Robust generalized eigenvalue classifier with ellipsoidal uncertainty. Annals of Operations Research, 216(1), 327–342.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Saeed Ketabchi
    • 1
    Email author
  • Hossein Moosaei
    • 2
  • Mohamad Razzaghi
    • 1
  • Panos M. Pardalos
    • 3
  1. 1.Department of Applied Mathematics, Faculty of Mathematical SciencesUniversity of GuilanRashtIran
  2. 2.Department of Mathematics, Faculty of ScienceUniversity of BojnordBojnordIran
  3. 3.Department of Industrial and Systems Engineering, “Center for Applied Optimization”University of FloridaGainesvilleUSA

Personalised recommendations