Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Classifying spaces for projections of immersions with controlled singularities

  • 8 Accesses

Abstract

We give an explicit simple construction for classifying spaces of maps obtained as hyperplane projections of immersions. We prove structure theorems for these classifying spaces.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Ando, Y.: Cobordisms of maps with singularities of given class. Algebr. Geom. Topol. 8, 1989–2029 (2008)

  2. 2.

    Barratt, M.G., Eccles, P.J.: \(\Gamma ^+\)-structures. I, Topology 13, 25–45 (1974)

  3. 3.

    Hatcher, A.: Algebraic Topology. Cambridge University Press (2002)

  4. 4.

    Ikegami, K., Saeki, O.: Cobordism group of Morse functions on surfaces. J. Math. Soc. Japan 55, 1081–1094 (2003)

  5. 5.

    Kalmár, B.: Cobordism group of fold maps of oriented \(3\)-manifolds into the plane. Acta Math. Hungar. 117, 1–25 (2007)

  6. 6.

    May, J.P.: The Geometry of Iterated Loop Spaces. Lecture Notes in Mathematics, vol. 271. Springer (1972)

  7. 7.

    Milnor, J.W., Stasheff, J.D.: Characteristic Classes, Princeton University Press., Princeton NJ (1974)

  8. 8.

    Morin, B.: Formes canoniques des singularités d'une application différentiable. C. R. Acad. Sci. Paris 260(5662–5665), 6502–6506 (1965)

  9. 9.

    Mosher, R.E., Tangora, M.C.: Cohomology Operations and Applications in Homotopy Theory. Harper & Row (1968)

  10. 10.

    Cs. Nagy, A. Szűcs, and T. Terpai, Singularities and stable homotopy groups of spheres. I, J. Sing., 17 (2008), 1–28

  11. 11.

    Rimányi, R., Szűcs, A.: Pontrjagin-Thom-type construction for maps with singularities. Topology 37, 1177–1191 (1998)

  12. 12.

    C. Rourke and B. Sanderson, The Compression Theorem. I, Geom. Topol., 5 (2001), 399–429

  13. 13.

    Sadykov, R.: Bordism group of solutions to differential relations. Algebr. Geom. Topol. 9, 2311–2347 (2009)

  14. 14.

    Segal, D.M.: On the stable homotopy of quaternionic and complex projective spaces. Proc. Amer. Math. Soc. 25, 838–841 (1970)

  15. 15.

    R. M. Switzer, Algebraic Topology – Homotopy and Homology, reprint of the 1975 original, Classics in Mathematics, Springer-Verlag (Berlin, 2002)

  16. 16.

    Szabó, E., Szűcs, A., Terpai, T.: On bordism and cobordism groups of Morin maps. J. Sing. 1, 134–145 (2010)

  17. 17.

    A. Szűcs, Cobordism of maps with simplest singularities, in: Topology Symposium, Siegen, 1979, Proc. Sympos., Univ. Siegen (Siegen, 1979), pp. 223–244; Lecture Notes in Math., 788, Springer (Berlin, 1980)

  18. 18.

    A. Szűcs, Analogue of the Thom space for mappings with singularity of type \(\Sigma ^1\), Mat. Sb. (N.S.), 108(150) (1979), 433–456, 478 (in Russian); translation in Math. USSR-Sb., 36 (1979), 405–426

  19. 19.

    Szűcs, A.: Cobordism of singular maps. Geom. Topol. 12, 2379–2452 (2008)

  20. 20.

    A. Szűcs and T. Terpai, Singularities and stable homotopy groups of spheres. II, J. Sing., 17 (2018), 28–57

  21. 21.

    Szűcs, A., Terpai, T.: Homotopy investigation of classifying spaces of cobordisms of singular maps. Acta Math. Hungar. 157, 489–502 (2019)

  22. 22.

    H. Toda, Composition Methods in the Homotopy Groups of Spheres, Annals of Math. Studies, 49, Princeton University Press (Princeton, N.J., 1962)

Download references

Author information

Correspondence to A. Szűcs.

Additional information

The authors were supported by the National Research, Development and Innovation Office NKFIH (OTKA) Grant NK 112735.

T. Terpai was also supported by the National Research, Development and Innovation Office NKFIH (OTKA) Grant K 120697.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Szűcs, A., Terpai, T. Classifying spaces for projections of immersions with controlled singularities. Acta Math. Hungar. (2020). https://doi.org/10.1007/s10474-020-01028-3

Download citation

Key words and phrases

  • singularity theory
  • cobordism
  • classifying space

Mathematics Subject Classification

  • primary 57R45
  • secondary 57R90
  • 57R42