Advertisement

Metric discrepancy results for geometric progressions perturbed by irrational rotations

  • K. FukuyamaEmail author
  • S. Mori
  • Y. Tanabe
Article

Abstract

For \(\theta \in (-\infty , -1)\cup (1, \infty )\) and for almost every x, it is known that the sequence \(\{\theta ^k x\}\) is uniformly distributed modulo 1. The speed of convergence sensitively depends on the algebraic nature of \({\theta}\). In this paper we prove that such dependence vanishes if we perturb the sequence by adding the irrational rotation \(\{\kappa\gamma\}\). The speed becomes identical with that of the sequence of uniformly distributed independent random variables.

Key words and phrases

discrepancy lacunary sequence law of the iterated logarithm 

Mathematics Subject Classification

primary 11K38 42A55 60F15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aistleitner, C.: On the law of the iterated logarithm for the discrepancy of lacunary sequences. Trans. Amer. Math. Soc. 362, 5967–5982 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Berkes, I.: On the central limit theorem for lacunary trigonometric series. Anal. Math. 4, 159–180 (1978)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bohl, P.: Über ein in der Theorie der säkulären Störungen vorkommendes Problem. J. Reine Angew. Math. 135, 189–283 (1909)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chung, K.: An estimate concerning the Kolmogorov limit distribution. Trans. Amer. Math. Soc. 67, 36–50 (1949)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Fukuyama, K.: The central limit theorem for Riesz-Raikov sums. Prob. Theory Related Fields 100, 57–75 (1994)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Fukuyama, K.: The law of the iterated logarithm for discrepancies of \(\{\theta ^n x\}\). Acta Math. Hungar. 118, 155–170 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    K. Fukuyama, A central limit theorem and a metric discrepancy result for sequence with bounded gaps, in: Dependence in Probability, Analysis and Number Theory, A volume in memory of Walter Philipp, Eds. I. Berkes, R. Bradley, H. Dehling, M. Peligrad, and R. Tichy, Kendrick Press (2010), pp. 233–246Google Scholar
  8. 8.
    K. Fukuyama, Metric discrepancy results for geometric progressions and variations, Summer School on the Theory of Uniform Distribution, Ed. S. Akiyama, RIMS Kôkyûroku Bessatsu, B29 (2012), pp. 41–64; hdl.handle.net/2433/196207Google Scholar
  9. 9.
    Fukuyama, K.: Metric discrepancy results for alternating geometric progressions. Monatsh. Math. 171, 33–63 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fukuyama, K.: A metric discrepancy result for the sequence of powers of minus two. Indag. Math. (NS) 25, 487–504 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    K. Fukuyama, A metric discrepancy result for geometric progression with ratio 3/2, Adv. Studies Pure Math. (to appear), arxiv.org/abs/1804.00085Google Scholar
  12. 12.
    Fukuyama, K., Kuri, N.: The central limit theorem for complex Riesz-Raikov sums. C. R. Math. Acad. Sci. Paris 353, 749–753 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    K. Fukuyama and Y. Mitsuhata, Bounded law of the iterated logarithm for discrepancies of permutations of lacunary sequences, Summer School on the Theory of Uniform Distribution, RIMS Kôkyûroku Bessatsu, B29 (2012), pp. 65–88; hdl.handle.net/2433/196206Google Scholar
  14. 14.
    K. Fukuyama, S. Sakaguchi, O. Shimabe, T. Toyoda, and M. Tscheckl, Metric discrepancy results for geometric progressions with small ratios, Acta Math. Hungar., 155 (2018), 416–430; verbose edition: arxiv:1711.02839v1 MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fukuyama, K., Yamashita, M.: Metric discrepancy results for geometric progressions with large ratios. Monatsh. Math. 180, 713–730 (2016)MathSciNetCrossRefGoogle Scholar
  16. 16.
    H. Kesten, The discrepancy of random sequences \(\{kx\}\), Acta Arith., 10 (1964/1965), 183–213MathSciNetCrossRefGoogle Scholar
  17. 17.
    Khintchine, A.: Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen. Math. Ann. 92, 115–125 (1924)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Monrad, D., Philipp, W.: Nearby variables with nearby conditional laws and a strong approximation theorem for Hilbert space valued martingales. Probab. Theory Rel. Fields 88, 381–404 (1991)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Philipp, W.: Limit theorems for lacunary series and uniform distribution mod 1. Acta Arith. 26, 241–251 (1975)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Philipp, W., Stout, W.: Almost sure invariance principles for partial sums of weakly dependent random variables. Mem. Amer. Math. Soc. 161, (1975)Google Scholar
  21. 21.
    W. Sierpiński, Sur la valeur asymptotique d'une certaine somme, Bull. Int. Acad. Polon. Sci. (Cracovie) A, (1910) 9–11Google Scholar
  22. 22.
    Smirnov, N.: Approximate variables from empirical data. Uspekhi Mat. Nauk. 10, 36–50 (1944). (in Russian)Google Scholar
  23. 23.
    V. Strassen, Almost sure behavior of sums of independent random variables and martingales, in: Fifth Berkeley Symp. Math. Stat. Prob., Vol. II, Part I (1967), 315–343Google Scholar
  24. 24.
    Takahashi, S.: An asymptotic property of a gap sequence. Proc. Japan Acad. 38, 101–104 (1962)MathSciNetCrossRefGoogle Scholar
  25. 25.
    H. Weyl, Über die Gibbssche Erscheinung und verwandte Konvergenzphänomene, Rend. Circ. Mat. Palermo, 30 (1910), 377–407MathSciNetCrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of MathematicsKobe UniversityRokko, KobeJapan

Personalised recommendations