Acta Mathematica Hungarica

, Volume 159, Issue 1, pp 27–41 | Cite as

Forcing and construction schemes

  • D. KalajdzievskiEmail author
  • F. Lopez


We investigate forcing and independence questions relating to construction schemes. We show that adding \(\kappa\geq\omega_{1} \) Cohen reals adds a capturing construction scheme. We study the weaker structure of n-capturing construction schemes and show that it is consistent to have n-capturing construction schemes but no (n + 1)-capturing construction schemes. We also study the relation of n-capturing with the m-Knaster hierarchy and show that \({\rm MA}_{\omega1}({\rm K}_{m}) \) and n-capturing are independent if \(n \leq m\) and incompatible if \(n>m\).

Key words and phrases

construction scheme Knaster hierarchy Cohen real 

Mathematics Subject Classification

03E05 03E35 03E65 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank Osvaldo Guzmán for pointing out a nontrivial error on a previous version of Definition 3.1.


  1. 1.
    Janet, H.: Barnett, Weak variants of Martin's Axiom. Fund. Math. 141, 61–73 (1992)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bell, M., Ginsburg, J., Todorčević, S.: Countable spread of \(\exp Y\) and \(\lambda Y\). Topology Appl. 14, 1–12 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Kenneth Kunen, Set Theory – An Introduction To Independence Proofs, Studies in logic and the foundations of mathematics, North Holland (1980)Google Scholar
  4. 4.
    López-Abad, J., Todorčević, S.: Generic Banach spaces and generic simplexes. J. Funct. Anal. 261, 300–386 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    López, Fulgencio: Banach spaces from a construction scheme. J. Math. Anal. Appl. 446, 426–435 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    López, Fulgencio, Todorčević, Stevo: Trees and gaps from a construction scheme. Proc. Amer. Math. Soc. 145, 871–879 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Todorčević, Stevo: Remarks on cellularity in products. Compositio Math. 57, 357–372 (1986)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Todorčević, Stevo: A construction scheme for non-separable structures. Adv. Math. 313, 564–589 (2017)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsYork UniversityTorontoCanada
  2. 2.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations