Advertisement

Acta Mathematica Hungarica

, Volume 159, Issue 1, pp 1–26 | Cite as

The colouring existence theorem revisited

  • S. ShelahEmail author
Article
  • 10 Downloads

Abstract

We prove a better colouring theorem for \(\aleph_4\) and even \(\aleph_3\). This has a general topology consequence.

Key words and phrases

set theory combinatorial set theory colouring partition relation 

Mathematics Subject Classification

primary 03E02 03E05 secondary 03E04 03E75 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eisworth, Todd: Getting more colors, II. J. Symbolic Logic 78, 17–38 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Juhász, István, Shelah, Saharon: Strong colourings yield \(\kappa \)-bounded spaces with discretely untouchable points. Proc. Amer. Math. Soc. 143, 2241–2247 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Justin Tatch Moore: A solution to the \(L\) space problem. J. Amer. Math. Soc. 19, 717–736 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Rinot, Assaf: Transforming rectangles into squares, with applications to strong colorings. Adv. Math. 231, 1085–1099 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Todorčević, Stevo: Partitioning pairs of countable ordinals. Acta Math. 159, 261–294 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Saharon Shelah, Cardinal Arithmetic, Oxford Logic Guides, vol. 29, Oxford University Press (1994).Google Scholar
  7. 7.
    Saharon Shelah, Analytical Guide and Corrections to [6], arXiv:math.LO/9906022
  8. 8.
    Shelah, Saharon: Was Sierpiński right? I. Israel J. Math. 62, 355–380 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Shelah, Saharon: Strong negative partition above the continuum. J. Symbolic Logic 55, 21–31 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Shelah, Saharon: Strong negative partitions below the continuum. Acta Math. Hungar. 58, 95–100 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Shelah, Saharon: Colouring and non-productivity of \(\aleph _2-cc\). Ann. Pure Appl. Logic 84, 153–174 (1997)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Saharon Shelah, Colouring of successor of regular again (manuscript)Google Scholar
  13. 13.
    Saharon Shelah, Colouring of successor of regulars (manuscript)Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat RamThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Department of Mathematics, Hill Center – Busch Campus RutgersThe State University of New JerseyPiscatawayUSA

Personalised recommendations