Acta Mathematica Hungarica

, Volume 159, Issue 1, pp 323–348

# Non-Oscillation of half-linear difference equations with asymptotically periodic coefficients

Article

## Abstract

We study oscillatory properties of half-linear difference equations with asymptotically periodic coefficients, i.e., coefficients which can be expressed as the sums of periodic sequences and sequences vanishing at infinity. Using a special variation of the discrete Riccati technique, we prove that the non-oscillation of the studied equations can be determined directly from their coefficients. Thus, the studied equations can be widely used as testing equations. Our main result is new even for linear equations with periodic coefficients. This fact is illustrated by simple corollaries and examples at the end of this paper.

## Key words and phrases

half-linear equation linear difference equation oscillation theory non-oscillation criterion Riccati technique

39A06 39A21

## Preview

Unable to display preview. Download preview PDF.

## References

1. 1.
R. P. Agarwal, M. Bohner, S. R. Grace and D. O'Regan, Discrete Oscillation Theory, Hindawi Publishing Corporation (New York, 2005)Google Scholar
2. 2.
O. Došlý, Half-linear Euler differential equation and its perturbations, Proc. 10'th Colloquium on the Qualitative Theory of Differential Equations, Electron. J. Qual. Theory Differ. Equ., Szeged, (2016), no. 10, 14 ppGoogle Scholar
3. 3.
Došlý, O., Hasil, P.: Critical oscillation constant for half-linear differential equations with periodic coefficients. Ann. Mat. Pura Appl. 190, 395–408 (2011)
4. 4.
Došlý, O., Jaroš, J., Veselý, M.: Generalized Prüfer angle and oscillation of half-linear differential equations. Appl. Math. Lett. 64, 34–41 (2017)
5. 5.
O. Došlý and P. Řehák, Half-linear Differential Equations, Elsevier (Amsterdam, 2005)Google Scholar
6. 6.
Elbert, Á.: Asymptotic behaviour of autonomous half-linear differential systems on the plane. Stud. Sci. Math. Hung. 19, 447–464 (1984)
7. 7.
Á. Elbert, Oscillation and nonoscillation theorems for some nonlinear ordinary differential equations, in: Ordinary and partial differential equations (Dundee, 1982), Lecture Notes in Math., vol. 964, Springer (Berlin, 1982), 187–212,Google Scholar
8. 8.
Gesztesy, F., Ünal, M.: Perturbative oscillation criteria and Hardy-type inequalities. Math. Nachr. 189, 121–144 (1998)
9. 9.
Hasil, P.: Conditional oscillation of half-linear differential equations with periodic coefficients. Arch. Math. 44, 119–131 (2008)
10. 10.
Hasil, P., Juránek, J., Veselý, M.: Adapted Riccati technique and non-oscillation of linear and half-linear equations. Appl. Math. Lett. 82, 98–105 (2018)
11. 11.
Hasil, P., Veselý, M.: Almost periodic transformable difference systems. Appl. Math. Comput. 218, 5562–5579 (2012)
12. 12.
P. Hasil and M. Veselý, Critical oscillation constant for difference equations with almost periodic coefficients, Abstract Appl. Anal. (2012), article ID 471435, 19 ppGoogle Scholar
13. 13.
P. Hasil and M. Veselý, Non-oscillation of half-linear differential equations with periodic coefficients, Electron. J. Qual. Theory Differ. Equ. (2015), no. 1, 21 ppGoogle Scholar
14. 14.
P. Hasil and M. Veselý, Non-oscillation of perturbed half-linear differential equations with sums of periodic coefficients, Adv. Differ. Equ. (2015), no. 190, 17 ppGoogle Scholar
15. 15.
Hasil, P., Veselý, M.: Oscillation and non-oscillation criteria for linear and half-linear difference equations. J. Math. Anal. Appl. 452, 401–428 (2017)
16. 16.
P. Hasil and M. Veselý, Oscillation and non-oscillation of asymptotically almost periodic half-linear difference equations, Abstract Appl. Anal. (2013), Article ID 432936, 12 ppGoogle Scholar
17. 17.
Hasil, P., Veselý, M.: Oscillation and non-oscillation of half-linear differential equations with coefficients determined by functions having mean values. Open Math. 16, 507–521 (2018)
18. 18.
P. Hasil and M. Veselý, Oscillation constants for half-linear difference equations with coefficients having mean values, Adv. Differ. Equ. (2015), no. 210, 18 ppGoogle Scholar
19. 19.
P. Hasil and M. Veselý, Oscillatory and non-oscillatory solutions of dynamic equations with bounded coefficients, Electron. J. Diff. Equ. (2018), no. 24, 22. ppGoogle Scholar
20. 20.
P. Hasil and J. Vítovec, Conditional oscillation of half-linear Euler-type dynamic equations on time scales, Electron. J. Qual. Theory Differ. Equ. (2015), no. 6, 24 ppGoogle Scholar
21. 21.
Hongyo, A., Yamaoka, N.: General solutions of second-order linear difference equations of Euler type. Opuscula Math. 37, 389–402 (2017)
22. 22.
Jaroš, J., Veselý, M.: Conditional oscillation of Euler type half-linear differential equations with unbounded coefficients. Studia Sci. Math. Hungar. 53, 22–41 (2016)
23. 23.
Kneser, A.: Untersuchungen über die reellen Nullstellen der Integrale linearer Differentialgleichungen. Math. Ann. 42, 409–435 (1893)
24. 24.
Krüger, H.: On perturbations of quasiperiodic Schrödinger operators. J. Differ. Equ. 249, 1305–1321 (2010)
25. 25.
Krüger, H., Teschl, G.: Effective Prüfer angles and relative oscillation criteria. J. Differ. Equ. 245, 3823–3848 (2008)
26. 26.
Krüger, H., Teschl, G.: Relative oscillation theory for Sturm-Liouville operators extended. J. Funct. Anal. 254, 1702–1720 (2008)
27. 27.
Misir, A., Mermerkaya, B.: Critical oscillation constant for half linear differential equations which have different periodic coefficients. Gazi Univ. J. Sci. 29, 79–86 (2016)
28. 28.
Naĭman, P.B.: The set of isolated points of increase of the spectral function pertaining to a limit-constant Jacobi matrix. Izv. Vysš. Učebn. Zaved. Mat. 1959, 129–135 (1959). (in Russian)
29. 29.
Řehák, P., Yamaoka, N.: Oscillation constants for second-order nonlinear dynamic equations of Euler type on time scales. J. Differ. Equ. Appl. 23, 1884–1900 (2017)
30. 30.
Schmidt, K.M.: Critical coupling constant and eigenvalue asymptotics of perturbed periodic Sturm-Liouville operators. Commun. Math. Phys. 211, 465–485 (2000)
31. 31.
Schmidt, K.M.: Oscillation of perturbed Hill equation and lower spectrum of radially periodic Schrödinger operators in the plane. Proc. Amer. Math. Soc. 127, 2367–2374 (1999)
32. 32.
Sugie, J.: Nonoscillation of second-order linear difference systems with varying coefficients. Linear Algebra Appl. 531, 22–37 (2017)
33. 33.
J. Sugie, Nonoscillation theorems for second-order linear difference equations via the Riccati-type transformation. II, Appl. Math. Comput., 304 (2017), 142–152Google Scholar
34. 34.
J. Sugie and M. Tanaka, Nonoscillation of second-order linear equations involving a generalized difference operator, in: Advances in difference equations and discrete dynamical systems, Springer Proc. Math. Stat., vol. 212, Springer (Singapore, 2017), pp. 241–258Google Scholar
35. 35.
Sugie, J., Tanaka, M.: Nonoscillation theorems for second-order linear difference equations via the Riccati-type transformation. Proc. Amer. Math. Soc. 145, 2059–2073 (2017)
36. 36.
Veselý, M.: Almost periodic homogeneous linear difference systems without almost periodic solutions. J. Difference Equ. Appl. 18, 1623–1647 (2012)
37. 37.
M. Veselý, Construction of almost periodic sequences with given properties, Electron. J. Differ. Equ. (2008), no. 126, 22 ppGoogle Scholar
38. 38.
Veselý, M., Hasil, P.: Conditional oscillation of Riemann-Weber half-linear differential equations with asymptotically almost periodic coefficients. Studia Sci. Math. Hungar. 51, 303–321 (2014)
39. 39.
Vítovec, J.: Critical oscillation constant for Euler-type dynamic equations on time scales. Appl. Math. Comput. 243, 838–848 (2014)
40. 40.
Yamaoka, N.: Oscillation and nonoscillation criteria for second-order nonlinear difference equations of Euler type. Proc. Amer. Math. Soc. 146, 2069–2081 (2018)
41. 41.
Zhang, G., Cheng, S.S.: A necessary and sufficient oscillation condition for the discrete Euler equation. PanAmer. Math. J. 9, 29–34 (1999) 