Advertisement

Explicit bounds of complex exponential frames on a complex field

  • P. VellucciEmail author
Article
  • 11 Downloads

Abstract

In the context of Riesz basis, studies on classical system of exponentials find their origin in the celebrated 1934’s work of Paley and Wiener. The stability question of exponential frames was considered in 1952 by Duffin and Schaeffer in their seminal paper. This article discusses the stability of complex exponential frames \({\left\{e^{{i\lambda}_{n}t}\right\}_{n\in\mathbb{Z}}}\) in \({L^{2}(-\pi,\pi)}\) and presents explicit upper and lower bounds for general complex exponential frames perturbed along the entire complex plane.

Key words and phrases

Kadec’s 1/4-theorem Riesz basis frames exponential bases 

Mathematics Subject Classification

42C05 42C15 42C30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

The author thanks Prof. Laura De Carli for stimulating discussions concerning this work and the anonymous referee for some useful comments.

References

  1. 1.
    Balan, R.: Stability theorems for Fourier frames and wavelet Riesz bases. J. Fourier Anal. Appl. 3, 499–504 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    O. Christensen, Perturbation of frames and applications to Gabor frames, in: Gabor Analysis and Algorithms, Birkhäuser (Boston, 1998), pp. 193–209Google Scholar
  3. 3.
    Christensen, O.: An Introduction to Frames and Riesz Bases, Birkhäuser. Boston (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Christensen, Ole: A Paley-Wiener theorem for frames. Proc. Amer. Math. Soc. 123, 2199–2201 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Duffin, R.J., Eachus, J.: Some notes on an expansion theorem of Paley and Wiener. Bull. Amer. Math. Soc. 48, 850–855 (1942)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Amer. Math. Soc. 72, 341–366 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gröchenig, K.: Foundations of Time-frequency Analysis, Birkhäuser. Boston (2001)CrossRefzbMATHGoogle Scholar
  8. 8.
    Heil, C.: A Basis Theory Primer, Birkhäuser. Boston (2001)zbMATHGoogle Scholar
  9. 9.
    Kadets, M.I.: The exact value of the Paley-Wiener constant. Dokl. Akad. Nauk 5, 559–561 (1964)zbMATHGoogle Scholar
  10. 10.
    R. E. A. C. Paley and N. Wiener, Fourier Transforms in the Complex Domain, Amer. Math. Soc. (Providence, RI, 1934)Google Scholar
  11. 11.
    Sun, W., Zhou, X.: On the stability of Gabor frames. Adv. in Appl. Math. 26, 181–191 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Vellucci, P.: A simple pointview for Kadec-1/4 theorem in the complex case. Ric. Mat. 64, 87–92 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    H. Zhong, A. Boivin and T. M. Peters, Explicit bounds of complex exponential frames, J. Inequal. Appl., 2006 (2006), Article ID 38173Google Scholar
  14. 14.
    R. M.Young, An Introduction to Non-Harmonic Fourier Series, revised edition, Academic Press (New York, 2001)Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of EconomicsUniversity of Roma TRERomeItaly

Personalised recommendations