Advertisement

Acta Mathematica Hungarica

, Volume 158, Issue 1, pp 40–52 | Cite as

Some notes on the Ulam stability of the general linear equation

  • T. Phochai
  • S. SaejungEmail author
Article
  • 55 Downloads

Abstract

We discuss the hyperstability outcome given by Aiemsomboon and Sintunavarat [1] and concerning the general linear equation. We give a simple proof of it via the hyperstability result for the Cauchy equation. Our proof is based on Brzdęk’s fixed point theorem. Moreover, we use a weaker assumption.

Key words and phrases

hyperstability general linear equation Cauchy equation 

Mathematics Subject Classification

primary 39B82 39B62 secondary 47H14 47J20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

The authors thank the referee for comments and suggestions on our first version of the manuscript.

References

  1. 1.
    Aiemsomboon, L., Sintunavarat, W.: On generalized hyperstability of a general linear equation. Acta Math. Hungar. 149, 413–422 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    C. Badea, On the Hyers–Ulam stability of mappings: The direct method, in: Stability of Mappings of Hyers–Ulam Type, Hadronic Press (Florida, 1994)Google Scholar
  3. 3.
    Bahyrycz, A., Piszczek, M.: Hyperstability of the Jensen functional equation. Acta Math. Hungar. 142, 353–365 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brzdęk, J.: Remarks on stability of some inhomogeneous functional equations. Aequationes Math. 89, 83–96 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    J. Brzdęk, Stability of additivity and fixed point methods, Fixed Point Theory Appl. (2013), 2013:285, 9 ppGoogle Scholar
  6. 6.
    Brzdęk, J., Chudziak, J.: and Zs. Páles, A fixed point approach to stability of functional equations, Nonlinear Anal. 74, 6728–6732 (2011)Google Scholar
  7. 7.
    Brzdęk, J., Pietrzyk, A.: A note on stability of the general linear equation. Aequationes Math. 75, 267–270 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Brzdęk, J., Popa, D., Raşa, I., Xu, B.: Ulam Stability of Operators. Academic Press (London, Mathematical Analysis and Its Applications (2018)zbMATHGoogle Scholar
  9. 9.
    Grabiec, A.: The generalized Hyers-Ulam stability of a class of functional equations. Publ. Math. Debrecen 48, 217–235 (1996)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Hyers, D.H.: On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U. S. A. 27, 222–224 (1941)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jung, S.-M.: On modified Hyers-Ulam-Rassias stability of a generalized Cauchy functional equation. Nonlinear Stud. 5, 59–67 (1998)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Ng, C.T.: Jensen's functional equation on groups. Aequationes Math. 39, 85–99 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Parnami, J.C., Vasudeva, H.L.: On Jensen's functional equation. Aequationes Math. 43, 211–218 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Piszczek, M.: Hyperstability of the general linear functional equation. Bull. Korean Math. Soc. 52, 1827–1838 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Piszczek, M.: Remark on hyperstability of the general linear equation. Aequationes Math. 88, 163–168 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Rassias, ThM, Tabor, J.: What is left of Hyers-Ulam stability? J. Natur. Geom. 1, 65–69 (1992)MathSciNetzbMATHGoogle Scholar
  17. 17.
    S. M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, Interscience Publishers (New York–London, 1960)Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  2. 2.Research Center for Environmental and Hazardous Substance ManagementKhon Kaen UniversityKhon KaenThailand

Personalised recommendations