Acta Mathematica Hungarica

, Volume 158, Issue 1, pp 1–16 | Cite as

The regular topology on C(X, Y)

  • A. Jindal
  • V. JindalEmail author


This paper studies the metrizability and various completeness properties of the space Cr(X,Y), where Y is a metric space containing a nontrivial path and Cr(X,Y) denotes the space of all continuous functions from a Tychonoff space X to Y, equipped with the regular topology.

Mathematics Subject Classification

primary 54C35 secondary 54D05 54E18 54E35 54E50 54E99 

Key words and phrases

regular topology metrizability uniformly complete completely metrizable Čech-complete sieve-complete partition-complete 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank the referee for the careful reading of the manuscript and for giving many useful suggestions that led to a number of improvements to the original version of this paper.


  1. 1.
    A. V. Arhangel'skiĭ and M. Tkachenko, Topological Groups and Related Structures, Atlantis Stud. Math. Vol. 1, Atlantis Press (Amsterdam, Paris, 2008)Google Scholar
  2. 2.
    Azarpanah, F., Manshoor, F., Mohamadian, R.: Connectedness and compactness in \({C(X)}\) with m-topology and generalized m-topology. Topology Appl. 159, 3486–3493 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Azarpanah, F., Paimann, M., Salehi, A.R.: Compactness, connectedness and countability properties of \({C(X)}\) with the \(r\)-topology. Acta Math. Hungar. 146, 265–284 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Azarpanah, F., Paimann, M., Salehi, A.R.: Connectedness of some rings of quotients of \({C(X)}\) with the m-topology. Comment. Math. Univ. Carolin. 56, 63–76 (2015)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Buhagiar, D., Yoshioka, I.: Sieves and completeness properties. Questions Answers Gen. Topology 18, 143–162 (2000)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Chaber, J., Čoban, M.M., Nagami, K.: On monotonic generalizations of Moore spaces, Čech complete spaces and \(p\)-spaces. Fund. Math. 84, 107–119 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    A. Eklund, The Fine topology and other topologies on C(X,Y), Ph.D. Dissertation, Virginia Polytechnic Institute and State University (1978)Google Scholar
  8. 8.
    R. Engelking, General Topology, Sigma Series in Pure Mathematics, Vol. 6, Heldermann Verlag (Berlin, 1989)Google Scholar
  9. 9.
    Frolík, Z.: Generalizations of the \(G_{\delta }\)-property of complete metric spaces. Czechoslovak Math. J. 10, 359–379 (1960)MathSciNetzbMATHGoogle Scholar
  10. 10.
    L. Gillman and M. Jerison, Rings of Continuous Functions, Springer-Verlag (New York, 1976) (reprint of the 1960 edition, Graduate Texts in Mathematics, No. 43)Google Scholar
  11. 11.
    Gómez-Pérez, J., McGovern, W.W.: The \(m\)-topology on \(C_m(X)\) revisited. Topology Appl. 153, 1838–1848 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    F. J. González-Acuña, Independence of the metric in the fine \({C}^0\)-topology of a function space, arXiv:1401.4146v1 [math.GN] (2014), 5 pp
  13. 13.
    González-Acuña, F.J.: Independence of the metric in the fine \({C}^0\)-topology of a function space. An. Inst. Mat. Univ. Nac. Autónoma México 3, 29–35 (1963). (in Spanish)MathSciNetGoogle Scholar
  14. 14.
    G. Gruenhage, Generalized metric spaces, in: Handbook of Set-Theoretic Topology, North-Holland (Amsterdam, 1984), pp. 423–501Google Scholar
  15. 15.
    E. Hewitt, Rings of real-valued continuous functions. I, Trans. Amer. Math. Soc., 64 (1948), 45–99Google Scholar
  16. 16.
    Holá, L., Jindal, V.: On graph and fine topologies. Topology Proc. 49, 65–73 (2017)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Holá, L., Novotný, B.: Topology of uniform convergence and m-topology on \({C(X)}\). Mediterr. J. Math. (2017). MathSciNetzbMATHGoogle Scholar
  18. 18.
    Holá, L., Zsilinszky, L.: Completeness and related properties of the graph topology on function spaces. Topology Proc. 46, 1–14 (2015)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Iberkleid, W., Lafuente-Rodriguez, R., McGovern, W.W.: The regular topology on \({C(X)}\). Comment. Math. Univ. Carolin. 52, 445–461 (2011)MathSciNetzbMATHGoogle Scholar
  20. 20.
    J. R. Isbell, Uniform Spaces, Mathematical Surveys, no. 12, American Mathematical Society (Providence, RI, 1964)Google Scholar
  21. 21.
    Jindal, V., McCoy, R.A., Kundu, S.: Path components in the uniform spaces of continuous functions into a normed linear space. Topology Proc. 43, 19–27 (2014)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Krikorian, N.: Fine topology on function spaces. Compos. Math. 21, 343–348 (1969)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Levy, R.: Almost-P-spaces. Canad. J. Math. 29, 284–288 (1977)CrossRefzbMATHGoogle Scholar
  24. 24.
    S. Lin and Z. Yun, Generalized Metric Spaces and Mappings, Atlantis Studies in Mathematics, Atlantis Press (Amsterdam, 2016)Google Scholar
  25. 25.
    Maio, G.D., Holá, L., Holý, D., McCoy, R.A.: Topologies on the space of continuous functions. Topology Appl. 86, 105–122 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    McCoy, R.A.: Fine topology on function spaces. Internat. J. Math. Math. Sci. 9, 417–424 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    McCoy, R.A.: Paths in spaces of homeomorphisms on the plane. Topology Appl. 159, 3518–3537 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    R. A. McCoy, S. Kundu, and V. Jindal, Function Spaces with Uniform, Fine and Graph Topologies, Springer Briefs in Mathematics, Springer (Cham, 2018)Google Scholar
  29. 29.
    R. A. McCoy and I. Ntantu, Topological Properties of Spaces of Continuous Functions, Lecture Notes in Mathematics, vol. 1315, Springer-Verlag (Berlin, 1988)Google Scholar
  30. 30.
    Michael, E.: Complete spaces and tri-quotient maps. Illinois J. Math. 21, 716–733 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Michael, E.: Almost complete spaces, hypercomplete spaces and related mapping theorems. Topology Appl. 41, 113–130 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Michael, E.: Partition-complete spaces are preserved by tri-quotient maps. Topology Appl. 44, 235–240 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Siwiec, F.: Generalizations of the first axiom of countability. Rocky Mountain J. Math. 5, 1–60 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Vaughan, J.E.: Spaces of countable and point-countable type. Trans. Amer. Math. Soc. 151, 341–351 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    S. Willard, General Topology, Addison-Wesley Publishing Co. (Reading, Mass.–London–Don Mills, Ont., 1970)Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Technology JammuJammuIndia
  2. 2.Department of MathematicsMalaviya National Institute of Technology JaipurJaipurIndia

Personalised recommendations