Advertisement

Acta Mathematica Hungarica

, Volume 159, Issue 1, pp 257–264 | Cite as

On the magnitude of the roots of some well-known enumerative polynomials

  • G. RáczEmail author
Article
  • 40 Downloads

Abstract

We present estimations of the roots of r-Dowling, r-Lah and r-Dowling–Lah polynomials. It is known that these polynomials have simple, real and non-positive roots. We give bounds for them and we also compute the real magnitude of the roots via computational methods.

Key words and phrases

r-Dowling polynomial r-Lah polynomial r-Dowling–Lah polynomial root of polynomials root estimation 

MathematicS Subject Classification

11C08 11B73 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benoumhani, M.: On some numbers related to Whitney numbers of Dowling lattices. Adv. in Appl. Math. 19, 106–116 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Benoumhani, M.: Log-concavity of Whitney numbers of Dowling lattices. Adv. in Appl. Math. 22, 186–189 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bóna, M., Mező, I.: Real zeros and partitions without singleton blocks. European J. Combin. 51, 500–510 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Broder, A.Z.: The \(r\)-Stirling numbers. Discrete Math. 49, 241–259 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Carlitz, L.: Weighted Stirling numbers of the first and second kind I. Fibonacci Quart. 18, 147–162 (1980)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Cheon, G.-S., Jung, J.-H.: \(r\)-Whitney numbers of Dowling lattices. Discrete Math. 312, 2337–2348 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Corcino, R.B., Corcino, C.B., Aldema, R.: Asymptotic normality of the \((r,\beta )\)-Stirling numbers. Ars Combin. 81, 81–96 (2006)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Dowling, T.A.: A class of geometric lattices based on finite groups. J. Combin. Theory Ser. B 14, 61–86 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    E. Gyimesi, The \(r\)-Dowling–Lah polynomials, submittedGoogle Scholar
  10. 10.
    E. Gyimesi and G. Nyul, New combinatorial interpretations of \(r\)-Whitney and \(r\)-Whitney–Lah numbers, Discrete Appl. Math., 255 (2019), 222–233.Google Scholar
  11. 11.
    Gyimesi, E., Nyul, G.: A comprehensive study of \(r\)-Dowling polynomials. Aequationes Math. 92, 515–527 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Laguerre, E.: Sur une méthode pour obtenir par approximation les racines d'une équation algébrique qui a toutes ses racines réelles. Nouvelles Annales de Mathématiques 19(161–171), 193–202 (1880)zbMATHGoogle Scholar
  13. 13.
    Merris, R.: The \(p\)-Stirling numbers. Turkish J. Math. 24, 379–399 (2000)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Mező, I.: On the maximum of \(r\)-Stirling numbers. Adv. in Appl. Math. 41, 293–306 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Mező, I.: A new formula for the Bernoulli polynomials. Results Math. 58, 329–335 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    I. Mező, The \(r\)-Bell numbers, J. Integer Sequences, 14 (2011), Article 11.1.1Google Scholar
  17. 17.
    Mező, I., Corcino, R.B.: The estimation of the zeros of the Bell and \(r\)-Bell polynomials. Appl. Math. Comput. 250, 727–732 (2015)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Nyul, G., Rácz, G.: The \(r\)-Lah numbers. Discrete Math. 338, 1660–1666 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    G. Nyul and G. Rácz, Sums of \(r\)-Lah numbers and \(r\)-Lah polynomials, submittedGoogle Scholar
  20. 20.
    G. Pólya and G. Szegő, Problems and Theorems in Analysis, I, Classics in Mathematics, vol. 193, Springer (Berlin–Heidelberg, 1998)Google Scholar
  21. 21.
    Samuelson, P.A.: How deviant can you be? J. Amer. Statist. Assoc. 63, 1522–1525 (1968)CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of DebrecenDebrecenHungary

Personalised recommendations