Advertisement

Characterizations of biselective operations

  • J. Devillet
  • G. Kiss
Article
  • 1 Downloads

Abstract

Let X be a nonempty set and let \({i, j \in \{1, 2, 3, 4\}}\). We say that a binary operation \({F \colon X ^{2} \to X}\) is (i, j)-selective if
$$F(F(x_1, x_2), F(x_3, x_4)) = F(x_i, x_j),$$
for all \({x_1, x_2, x_3, x_4 \in X}\). In this paper we provide characterizations of the class of (i, j)-selective operations. We also investigate some subclasses by adding algebraic properties such as associativity or bisymmetry.

Key words and phrases

(i, j)-selectiveness transitivity axiomatization associativity bisymmetry 

Mathematics Subject Classification

primary 39B52 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank the reviewer for quick and careful review and useful suggestions. They also thank Jean-Luc Marichal for fruitful discussions and valuable remarks.

References

  1. 1.
    N. L. Ackerman, A characterization of quasitrivial n-semigroups, Algebra Universalis (to appear).Google Scholar
  2. 2.
    J. Aczél: Lectures in Functional Equations and Their Applications. Dover Publications, Inc, New York (2006)Google Scholar
  3. 3.
    Bustince H., Campión M.J., Fernández F.J., Induráin E., Ugarte M.D.: New trends on the permutability equation. Aequat. Math. 88, 211–232 (2014)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Candeal J.C., Induráin E.: Bivariate functional equations around associativity. Aequat. Math. 84, 137–155 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Jech T.: Set Theory. Academic Press, New York (1978)zbMATHGoogle Scholar
  6. 6.
    Jezek J., Kepka T.: Quasitrivial and nearly quasitrivial distributive groupoids and semigroups. Acta Univ. Carolinae – Math. et Phys. 19, 25–44 (1978)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Kannappan Pl.: Functional Equations and Inequalities with Applications. Springer, Inc., New York (2009)CrossRefGoogle Scholar
  8. 8.
    Kimura N.: The structure of idempotent semigroups. I.. Pacific J. Math., 8, 257–275 (1958)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Martín J., Mayor G., Torrens J.: On locally internal monotonic operations. Fuzzy Sets and Systems 137, 27–42 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    McLean D.: Idempotent semigroups. Amer. Math. Monthly 61, 110–113 (1954)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Pouzet M., Rosenberg I.G., Stone M.G.: A projection property. Algebra Universalis 36, 159–184 (1996)MathSciNetCrossRefGoogle Scholar
  12. 12.
    N. J. A. Sloane (editor), The On-Line Encyclopedia of Integer Sequences, www.oeis.org.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Mathematics Research UnitUniversity of LuxembourgEsch-sur-AlzetteLuxembourg
  2. 2.Alfréd Rényi Institute of MathematicsHungarian Academy of ScienceBudapestHungary

Personalised recommendations