Advertisement

Acta Mathematica Hungarica

, Volume 157, Issue 2, pp 503–521 | Cite as

On weakly semiconformally symmetric manifolds

  • U. C. DeEmail author
  • Y. J. Suh
Article
  • 52 Downloads

Abstract

The object of the present paper is to study weakly semiconformally symmetric manifolds (WSCS)n. At first some geometric properties of (WSCS)n (n > 2) have been studied. Finally, we consider the decomposability of (WSCS)n.

Key words and phrases

weakly symmetric manifold pseudo semiconformally symmetric manifold weakly semiconformally symmetric manifold 

Mathematics Subject Classification

53C25 53C35 53C50 53B30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Binh, T.Q.: On weakly symmetric Riemannian spaces. Publ. Math. Debrecen 42, 103–107 (1993)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Chaki, M.C.: On pseudo symmetric manifolds. Ann. St. Univ. ``Al I Cuza'' Iasi 33, 53–58 (1987)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Chern, S.S.: What is geometry? Amer. Math. Monthly 97, 679–686 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    De, U.C.: On weakly symmetric structures on Riemannian manifolds, Facta Univ. Ser. Mech. Automat. Control Robot. 3, 805–819 (2003)MathSciNetGoogle Scholar
  5. 5.
    De, U.C.: On weakly conformally symmetric Ricci-recurrent spaces. Publ. Math. Debrecen 62, 379–386 (2003)MathSciNetzbMATHGoogle Scholar
  6. 6.
    De, U.C., Bandyopadhyay, S.: On weakly symmetric spaces. Publ. Math. Debrecen 54, 377–381 (1999)MathSciNetzbMATHGoogle Scholar
  7. 7.
    De, U.C., Bandyopadhyay, S.: On weakly symmetric spaces. Acta Math. Hungar. 83, 205–212 (2000)MathSciNetzbMATHGoogle Scholar
  8. 8.
    De, U.C., Mallick, S.: On weakly symmetric spacetimes. Kragujevac J. Math. 36, 299–308 (2012)MathSciNetzbMATHGoogle Scholar
  9. 9.
    De, U.C., Mantica, A.C., Molinari, L.G., Suh, Y.J.: On weakly cyclic Z-symmetric spacetimes. Acta Math. Hungar. 149, 462–477 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    De, U.C., Mantica, A.C., Suh, Y.J.: On weakly cyclic Z-symmetric manifolds. Acta Math. Hungar. 146, 153–167 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    De, U.C., Sengupta, J.: On a weakly symmetric Riemannian manifold admitting a special type of semi-symmetric metric connection. Novi Sad. J. Math. 29, 89–95 (1999)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Gray, A.: Einstein-like manifolds which are not Einstein. Geom. Dedicata 7, 259–280 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kim, J.: On pseudo semiconformally symmetric manifolds. Bull. Korean Math. Soc. 54, 177–186 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    J. Kim, A type of conformal curvature tensor, Far East J. Math. Soc., to appearGoogle Scholar
  15. 15.
    Kim, J.: Notes on weakly cyclic Z-symmetric manifolds. Bull. Korean Math. Soc. 55, 227–237 (2018)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Mantica, A.C., Molinari, L.G.: Weakly Z-symmetric manifolds. Acta Math. Hungar. 135, 80–96 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Mantica, A.C., Molinari, L.G.: A second-order identity for the Riemannian tensor and applications. Colloq. Math. 122, 69–82 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    A. C. Mantica and Y. J. Suh, Pseudo Z-symmetric Riemannian manifolds with harmonic curvature tensors, Int. J. Geom. Meth. Mod. Phys., 9 (2012) 1250004, 21 ppGoogle Scholar
  19. 19.
    Ozen, F., Altay, S.: Weakly and pseudo-symmetric Riemannian spaces. Indian J. Pure Appl. Math. 33, 1477–1488 (2002)MathSciNetzbMATHGoogle Scholar
  20. 20.
    F. Ozen and S. Altay, On weakly and pseudo-concircular symmetric structures on a Riemannian manifold, Acta Univ. Palack. Olomuc., Fac. Rerum. Natur. Math., 47 (2008) 129–138Google Scholar
  21. 21.
    Prvanović, M.: On weakly symmetric Riemannian manifolds. Publ. Math. Debrecen 46, 19–25 (1995)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Schouten, J.A.: Ricci-Calculus. Springer-Verlag (Berlin-Göttingen-Heidelberg, An introduction to Tensor Analysis and its Geometrical Applications (1954)CrossRefzbMATHGoogle Scholar
  23. 23.
    Sen, R.N., Chaki, M.C.: On curvature restrictions of a certain kind of conformally flat Riemannian space of class one. Proc. Nat. Inst. Sci. India 33, 100–102 (1967)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Shaikh A.A., Hui S.K.: On weakly conharmonically symmetric manifolds. Tensor (N.S.), 70, 119–134 (2008)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Tamássy, L., Binh, T.Q.: On weakly symmetric and weakly projectively symmetric Riemannian manifolds. Colloq. Math. Soc. János Bolyai 56, 663–670 (1989)zbMATHGoogle Scholar
  26. 26.
    Tamássy L., Binh T.Q.: On weak symmetries of Einstein and Sasakian manifolds. Tensor (N. S.), 53, 140–148 (1993)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Yano K., Kon M.: Structures on Manifolds. World Scientific, Singapore (1984)zbMATHGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Pure MathematicsUniversity of CalcuttaKolkataIndia
  2. 2.Department of Mathematics and RIRCMKyungpook National UniversityTaeguSouth Korea

Personalised recommendations