Clean-like properties in pullbacks and amalgamation rings

  • A. Mimouni


We study the transfer of the notions of clean rings, weakly clean rings, almost clean rings and unit regular rings to various context of pullbacks and amalgamations. Our attempt is to present original and new classes of these rings.

Key words and phrases

clean ring weakly clean ring almost clean ring unit regular ring pullbacks amalgamation 

Mathematics Subject Classification

primary 13A15 13F05 secondary 13G05 13F30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author expresses his sincere thanks to the referee for helpful suggestions and comments, which have greatly improved this paper.


  1. 1.
    M. S. Ahn, Weakly clean and almost clean rings, Ph.D. thesis, University of Iowa (2003).Google Scholar
  2. 2.
    Ahn M.S., Anderson D.D.: Weakly clean rings and almost clean rings. Rocky Mountain J. Math., 36, 783–798 (2006)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Anderson D.D., Camillo A.: Commutative rings whose elements are a sum of a unit and idempotent. Comm. Algebra 30, 3327–3336 (2002)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    D’Anna M.: A construction of Gorenstein rings. J. Algebra 306, 507–519 (2006)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    M. D’Anna, C. A. Finocchiaro and M. Fontana, Amalgamated algebras along an ideal, in : Commutative Algebra and its Applications, Walter de Gruyter (Berlin, 2009), pp. 241–252.Google Scholar
  6. 6.
    D’Anna M., Fontana M.: The amalgamated duplication of a ring along a multiplicative-canonical ideal. Ark. Mat. 45, 241–252 (2007)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    D’Anna M., Fontana M.: An amalgamated duplication of a ring along an ideal, the basic properties. J. Algebra Appl., 6, 443–459 (2007)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    M. F. Atiyah and I. G. MacDonald, Introduction to Commutatice Algebra, Addison-Wesley (1969).Google Scholar
  9. 9.
    Bastida E., Gilmer R.: Overrings and divisorial ideals of rings of the form D+M. Michigan Math. J., 20, 79–95 (1992)MathSciNetMATHGoogle Scholar
  10. 10.
    Boisen M., Sheldon P.B.: CPI-extension: Overrings of integral domains with special prime spectrum. Canad. J. Math., 29, 722–737 (1977)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Camillo V.P., Khurana D.: A characterization of unit regular rings. Comm. Algebra, 29, 2293–2295 (2001)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Chin A. Y. M., Qua K. T.: A note on weakly clean rings. Acta Math. Hungar., 132, 113–116 (2011)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Chhiti M., Mahdou N., Tamekkante M.: Clean property in amalgamated algebras along an ideal. Hacettepe J. Math. Stat., 44, 41–49 (2015)MathSciNetMATHGoogle Scholar
  14. 14.
    Fontana M.: Topologically defined classes of commutative rings. Ann. Mat. Pura Appl., 123, 331–355 (1980)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Fontana M., Gabelli S.: On the class group and local class group of a pullback. J. Algebra, 181, 803–835 (1996)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Gabelli S., Houston E.: Coherentlike conditions in pullbacks. Michigan Math. J. 44, 99–122 (1997)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    McGovern W.W.: Clean semiprime f-rings with bounded inversion. Comm. Algebra, 31, 3295–3304 (2003)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    M. Nagata, Local Rings, Interscience (New York, 1962).Google Scholar
  19. 19.
    Nicholson W.K.: Lifting idempotents and exchange rings. Trans. Amer. Math. Soc., 229, 269–278 (1977)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsKing Fahd University of Petroleum & MineralsDhahranSaudi Arabia

Personalised recommendations