A p-nilpotency criterion for finite groups
Article
First Online:
- 29 Downloads
Abstract
We prove a p-nilpotency criterion for finite groups in terms of the element orders of its p′-reduced sections that extends a nilpotency criterion by Tărnăuceanu.
Key words and phrases
p-nilpotent finite group Euler’s totient function fusion system Frobenius’s p-complement theoremMathematics Subject Classification
20D20 20D15Preview
Unable to display preview. Download preview PDF.
References
- 1.M. Aschbacher, R. Kessar and B. Oliver, Fusion Systems in Algebra and Topology, London Mathematical Society Lecture Note Series, 391, Cambridge University Press (Cambridge, 2011).Google Scholar
- 2.Ballester-Bolinches A., Ezquerro L., Su N., Wang Y.: On the focal subgroup of a saturated fusion system. J. Algebra 468, 72–79 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 3.Benson D.J., Grodal J., Henke E.: Group cohomology and control of p-fusion. Invent. Math. 197, 491–507 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 4.Broto C., Levi R., Oliver B.: Homotopy equivalences of p-completed classifying spaces of finite groups. Invent. Math. 151, 611–664 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Broto C., Levi R., Oliver B.: The homotopy theory of fusion systems. J. Amer. Math. Soc. 16, 779–856 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Cantarero J., Scherer J., Viruel A.: Nilpotent p-local finite groups. Ark. Mat. 52, 203–225 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 7.D. A. Craven, The Theory of Fusion Systems. An Algebraic Approach, Cambridge Studies in Advanced Mathematics, 131, Cambridge University Press (Cambridge, 2011).Google Scholar
- 8.Díaz A.: A spectral sequence for fusion systems. Algebr. Geom. Topol. 14, 349–378 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 9.Díaz Ramos A., Espinosa Baro A., Viruel A.: A cohomological characterization of nilpotent fusion systems. Proc. Amer. Math. Soc. 146, 1447–1450 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Díaz A., Glesser A., Park S., Stancu R.: Tate’s and Yoshida’s theorems on control of transfer for fusion systems. J. Lond. Math. Soc. 84, 475–494 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 11.González-Sánchez J., Ruiz A., Viruel A.: On Thompson’s p-complement theorems for saturated fusion systems. Kyoto J. Math. 55, 617–626 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
- 12.Gorenstein D.: Finite Groups. 2nd ed. Chelsea Publishing Co, New York (1980)zbMATHGoogle Scholar
- 13.Kessar R., Linckelmann M., Navarro G.: A characterisation of nilpotent blocks. Proc. Amer. Math. Soc. 143, 5129–5138 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
- 14.Liao J., Zhang J.: Nilpotent fusion systems. J. Algebra 442, 438–454 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
- 15.M. Tărnăuceanu, A generalization of the Euler’s totient function, Asian-Eur. J. Math., 8 (2015), article ID 1550087.Google Scholar
- 16.M. Tărnăuceanu, A nilpotency criterion for finite groups, Acta Math. Hungar. (to appear).Google Scholar
Copyright information
© Akadémiai Kiadó, Budapest, Hungary 2018