Acta Mathematica Hungarica

, Volume 157, Issue 2, pp 349–363 | Cite as

On the existence of periodic solutions to constrained Lagrangian systems

  • O. ZubelevichEmail author


A Lagrangian system is considered. The configuration space is a non-compact manifold that depends on time. A set of periodic solutions has been found.

Key words and phrases

Lagrangian system periodic solution 

Mathematics Subject Classification

34C25 70F20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams R.A., Fournier J.J.F.: Sobolev Spaces. 2nd ed. Elsevier, Amsterdam (2003)zbMATHGoogle Scholar
  2. 2.
    Capozzi A., Fortunato D., Salvatore A.: Periodic solutions of Lagrangian systems with bounded potential. J. Math. Anal. Appl. 124, 482–494 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    R. Edwards, Functional Analysis, Holt, Rinehart and Winston (New York–Toronto–London, 1965).Google Scholar
  4. 4.
    I. Ekeland and R. Témam, Convex Analysis and Variational Problems, Society for Industrial and Applied Mathematics (SIAM) (Philadelphia, PA, 1999).Google Scholar
  5. 5.
    A. Kolmogorov and S. Fomin, Elements of the Theory of Functions and Functional Analysis, Dover (1999).Google Scholar
  6. 6.
    Mawhin J., Willem M.: Critical Point Theory and Hamiltonian Systems. Springer-Verlag, New York (1989)CrossRefzbMATHGoogle Scholar
  7. 7.
    Struwe M.: Variational Methods. Springer-Verlag, Berlin (2008)zbMATHGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Dept. of Theoretical mechanics, Mechanics and Mathematics FacultyM. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations