Acta Mathematica Hungarica

, Volume 157, Issue 2, pp 478–488 | Cite as

Heron triangles with figurate number sides

  • J. Peng
  • Y. ZhangEmail author


By the theory of Pellian equation and the method of undetermined coefficients, we show that there exist infinitely many isosceles Heron triangles whose sides are polygonal numbers and binomial coefficients.

Key words and phrases

Heron triangle figurate number polygonal number binomial coefficient Pellian equation 

Mathematics Subject Classification

primary 51M25 secondary 11D72 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bailey, H., Gosnell, W.: Heronian triangles with sides in arithmetic progression: an inradius perspective. Math. Mag. 85, 290–294 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ballew, D.W., Weger, R.C.: Pythagorean triples and triangular numbers. Fibonacci Quart. 17, 168–172 (1979)MathSciNetzbMATHGoogle Scholar
  3. 3.
    E. Deza and M. M. Deza, Figurate Numbers, World Scientific Publishing Co. Pte. Ltd. (Singapore, 2012)Google Scholar
  4. 4.
    Fleeor, C.R.: Heronian triangles with consecutive integer sides. J. Rec. Math. 28, 113–115 (1996)Google Scholar
  5. 5.
    R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag (Berlin, 2004)Google Scholar
  6. 6.
    H. Harborth and A. Kemnitz, Fibonacci triangles, in: Applications of Fibonacci Numbers, Vol. 3 (1988), Kluwer Acad. Publ. (Dordrecht, 1990), pp. 129–132Google Scholar
  7. 7.
    Harborth, H., Kemnitz, A., Robbins, N.: Non-Existence of Fibonacci triangles. Congr. Numer. 114, 29–31 (1996)MathSciNetzbMATHGoogle Scholar
  8. 8.
    B. He, A. Togbé and M. Ulas, On the Diophantine equation \(z^2=f(x)^2\pm f(y)^2\). II, Bull. Aust. Math. Soc., 82 (2010), 187–204Google Scholar
  9. 9.
    M. Lagneau, Integer areas of integer-sided triangles where two sides are of square length, (2013)Google Scholar
  10. 10.
    Luca, F.: Fermat primes and Heron triangles with prime power sides. Amer. Math. Monthly 110, 46–49 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    MacDougall, J.A.: Heron triangles with sides in arithmetic progression. J. Rec. Math. 31, 189–196 (2003)Google Scholar
  12. 12.
    L. Rathbun, Second primitive Heron triangle with square sides found, (2018)Google Scholar
  13. 13.
    Sastry, K.R.S.: A Heron difference. Crux Math. 27, 22–26 (2001)Google Scholar
  14. 14.
    Sierpiński, W.: Sur les nombres triangulaires carrés. Bull. Soc. Royale Sciences Liége 30, 189–194 (1961)MathSciNetzbMATHGoogle Scholar
  15. 15.
    W. Sierpiński, Elementary Theory of Numbers, Wroclawska Drukarnia Naukowa (Warzawa, 1964)Google Scholar
  16. 16.
    P. Stănică, S. Sarkar, S. S. Gupta, S. Maitra and N. Kar, Counting Heron triangles with constraints, Integers, 13 (2013), #A3Google Scholar
  17. 17.
    Sz. Tengely and M. Ulas, On certain Diophantine equation of the form \(z^2=f(x)^2\pm g(y)^2\), J. Number Theory, 174 (2017), 239–257Google Scholar
  18. 18.
    Ulas, M., Togbé, A.: On the Diophantine equation \(z^2=f(x)^2\pm f(y)^2\). Publ. Math. Debrecen 76, 183–201 (2010)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Y. Zhang and A. Zargar, On the Diophantine equations \(z^2=f(x)^2\pm f(y)^2\) involving quartic polynomials, Period. Math. Hung. (2018),

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.School of Mathematics and Statistics, Changsha University of Science and TechnologyHunan Provincial Key Laboratory of Mathematical Modeling and Analysis in EngineeringChangshaChina

Personalised recommendations