Advertisement

Acta Mathematica Scientia

, Volume 39, Issue 4, pp 1089–1102 | Cite as

Disjoint Supercyclic Weighted Pseudo-Shifts on Banach Sequence Spaces

  • Ya Wang (王亚)Email author
  • Yu-Xia Liang (梁玉霞)Email author
Article
  • 1 Downloads

Abstract

In this article, we present several equivalent conditions ensuring the disjoint supercyclicity of finite weighted pseudo-shifts acting on an arbitrary Banach sequence space. The disjoint supercyclic properties of weighted translations on locally compact discrete groups, the direct sums of finite classical weighted backward shifts, and the bilateral backward operator weighted shifts can be viewed as special cases of our main results. Furthermore, we exhibit an interesting fact that any finite bilateral weighted backward shifts on the space 2 (ℤ) never satisfy the d-Supercyclicity Criterion by a simple proof.

Key words

Disjoint supercyclicity weighted pseudo-shifts disjoint Blow-up/collapse Property 

2010 MR Subject Classification

47A16 47B38 46E15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bayart F, Matheron É. Dynamics of Linear Operators. Cambridge: Cambridge University Press, 2009CrossRefzbMATHGoogle Scholar
  2. [2]
    Bernal-González L, Grosse-Erdmann K G. The Hypercyclicity Criterion for sequences of operators. Studia Math, 2003, 157(1): 17–32MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Grosse-Erdmann K G, Peris Manguillot A. Linear Chaos. London: Springer, 2011CrossRefzbMATHGoogle Scholar
  4. [4]
    Bernal-González L. Disjoint hypercyclic operators. Studia Math, 2007, 182(2): 113–131MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Bès J, Peris A. Disjointness in hypercyclicity. J Math Anal Appl, 2007, 336: 297–315MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Bès J, Martin Ö, Sanders R. Weighted shifts and disjoint hypercyclicity. J Oper Theory, 2014, 72(1): 15–40MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Sanders R, Shkarin S. Existence of disjoint weakly mixing operators that fail to satisfy the Disjoint Hypercyclicity Criterion. J Math Anal Appl, 2014, 417(2): 834–855MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Bès J, Martin Ö. Compositional disjoint hypercyclicity equals disjoint supercyclicity. Houston J Math, 2012, 38(4): 1149–1163MathSciNetzbMATHGoogle Scholar
  9. [9]
    Bès J, Martin Ö, Peris A. Disjoint hypercyclic linear fractional composition operators. J Math Anal Appl, 2011, 381(2): 843–856MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Martin Ö. Disjoint hypercyclic and supercyclic composition operators [D]. Bowling Green State University, 2010zbMATHGoogle Scholar
  11. [11]
    Liang Y X, Zhou Z H. Disjoint supercyclic powers of weighted shifts on weighted sequence spaces. Turk J Math, 2014, 38: 1007–1022MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Martin Ö, Sanders R. Disjoint supercyclic weighted shifts. Integr Equ Oper Theory, 2016, 85(2): 191–220MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Han S A, Liang Y X. Disjoint hypercyclic weighted translations generated by aperiodic elements. Collect Math, 2016, 67(3): 347–356MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Liang Y X, Xia L. Disjoint supercyclic weighted translations generated by aperiodic elements. Collect Math, 2017, 68: 265–278MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Wang Y, Zhou Z H. Disjoint hypercyclic powers of weighted pseudo-shifts. Bull Malays Math Sci Soc, 2017, 41(2): 1–20.  https://doi.org/10.1007/s40840-017-0584-7 Google Scholar
  16. [16]
    Bès J, Martin Ö, Peris A, et al. Disjoint mixing operators. J Funct Anal, 2012, 263(5): 1283–1322MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Salas H. Dual disjoint hypercyclic operators. J Math Anal Appl, 2011, 374(1): 106–117MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Shkarin S. A short proof of existence of disjoint hypercyclic operators. J Math Anal Appl, 2010, 367(2): 713–715MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Zhang L, Zhou Z H. Disjointness in supercyclicity on the algebra of Hilbert-Schmidt operators. Indian J Pure Appl Math, 2015, 46(2): 219–228MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Salas H. The Strong Disjoint Blow-up/Collapse Property. J Funct Spaces Appl, 2013, 6 pages. Article ID: 146517Google Scholar
  21. [21]
    Grosse-Erdmann K G. Hypercyclic and chaotic weighted shifts. Studia Math, 2000, 139(1): 47–68MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    Hazarika M, Arora S C. Hypercyclic operator weighted shifts. Bull Korean Math Soc, 2004, 41(4): 589–598MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    Liang Y X, Zhou Z H. Hereditarily hypercyclicity and supercyclicity of weighted shifts. J Korean Math Soc, 2014, 51(2): 363–382MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Wuhan Institute Physics and Mathematics, Chinese Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of MathematicsTianjin University of Finance and EconomicsTianjinChina
  2. 2.School of Mathematical SciencesTianjin Normal UniversityTianjinChina

Personalised recommendations