Advertisement

Acta Mathematica Scientia

, Volume 39, Issue 4, pp 1003–1016 | Cite as

Pointwise Multiplication Operators from Hardy Spaces to Weighted Bergman Spaces in the Unit Ball of ℂn

  • Ru Peng (彭茹)Email author
  • Xiaolei Xing (邢晓蕾)Email author
  • Liangying Jiang (江良英)Email author
Article
  • 6 Downloads

Abstract

This article is devoted to characterizing the boundedness and compactness of multiplication operators from Hardy spaces to weighted Bergman spaces in the unit ball of ℂn.

Key words

Pointwise multiplication operators Hardy spaces Bergman spaces Carleson measure 

2010 MR Subject Classification

32A37 47B38 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Carleson L. An interpolation problem for bounded analytic functions. Amer J Math, 1958, 80: 921–930MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Carleson L. Interpolations by bounded analytic functions and the corona problem. Ann of Math, 1962, 76: 547–559MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Duren P. Extension of a theorem of Carleson. Bull Amer Math Soc, 1969, 75: 143–146MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Feldman N S. Pointwise multipliers from the Hardy space to the Bergman space. Illinois J Math, 1999, 43: 211–221MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Hörmander L. L p estimates for (pluri-) subharmonic functions. Math Scand, 1967, 20: 65–78MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Hu P Y, Shi J H. Multipliers on Dirichlet type spaces. Acta Math Sinica (Engl Ser), 2001, 17(2): 263–272MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Hu Z J. Extended Cesáro operators on the Bloch space in the unit ball of ℂn. Acta Mathematica Scientia, 2003, 23B: 561–566CrossRefzbMATHGoogle Scholar
  8. [8]
    Li B, Ouyang C H. Higher radial derivative of Bloch type functions. Acta Mathematica Scientia, 2002, 22B(4): 433–445MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Li B, Ouyang C H. Higher radial derivative of functions of Q p spaces and its applications. J Math Anal Appl, 2007, 327: 1257–1272MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Li S, Stevic S. Riemann-Stieltjes operators between different weighted Bergman spaces. Bull Belg Math Soc Simon Stevin, 2008, 15: 677–686MathSciNetzbMATHGoogle Scholar
  11. [11]
    Luecking D H. Embedding derivatives of Hardy spaces into Lebesgue spaces. Proc Lond Math Soc, 1991, 63: 595–619MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Ortega J M, Fàbrega J. Pointwise multipliers and corona type decomposition in BMOA. Ann Inst Fourier(Grenoble), 1996, 46: 111–137MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Ortega J M, Fàbrega J. Pointwise multipliers and decomposition theorems in Fs∞,q. Math Ann, 2004, 329: 247–277MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Ouyang C H, Yang W S, Zhao R H. Characterizations of Bergman spaces and Bloch space in the unit ball of ℂn. Trans Amer Math Soc, 1995, 347: 4301–4313MathSciNetzbMATHGoogle Scholar
  15. [15]
    Ouyang C H, Yang W S, Zhao R H. Mobius invariant Q p Spaces associated with the Green’s function on the unit ball of ℂn. Pacific J Math, 1998, 182: 69–99MathSciNetCrossRefGoogle Scholar
  16. [16]
    Pau J, Zhao R H. Carleson measure, Riemann-Stieltjes and multiplication operators on a general family of function spaces. Integral Equations and Operator Theory, 2014, 78: 483–514MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    Pau J. Integration operators between Hardy spaces on the unit ball of ℂn. J Funct Anal, 2016, 270: 134–176MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Peng R, Ouyang C H. Pointwise multipliers from Dirichlet type spaces D T to Q p spaces in the unit ball of ℂn. J Math Anal Appl, 2008, 338: 1448–1457MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Peng R, Ouyang C H. Riemann-Stieltjes operators and multipliers on Q p spaces in the unit ball of ℂn. J Math Anal Appl, 2011, 377: 180–193MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Peng R, Wu Y, Deng F W. Carleson measures, Riemann-Stieltjes operators and multipliers on F(p, q, s) spaces in the unit ball of ℂn. Acta Mathematica Scientia, 2016, 36B: 635–654MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    Pommerenke C H. Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation. Comment Math Helv, 1997, 52: 591–602CrossRefzbMATHGoogle Scholar
  22. [22]
    Rudin W. Function Theory in the Unit Ball of ℂn. New York: Springer-Verlag, 1980CrossRefGoogle Scholar
  23. [23]
    Stegenga D A. Multipliers of the Dirichlet space. Illinois J Math, 1980, 24: 113–139MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    Tjani M. Compact composition operators on Besov spaces. Trans Amer Math Soc, 2003, 355: 4683–4698MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    Wu Z J. Carleson measures and multipliers for Dirichlet spaces. J Funct Anal, 1999, 169: 148–163MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    Xiao J. Riemann-Stieltjes operators on weighted Bloch and Bergman spaces of the unit ball. J Lond Math Soc, 2004, 70: 199–214MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    Xiao J. Riemann-Stieltjes integral operators between weighted Bergman spaces. Mathematics, 2006Google Scholar
  28. [28]
    Xiao J. The Q p Carleson measure problem. Advances in Mathmatics, 2008, 217: 2075–2088CrossRefzbMATHGoogle Scholar
  29. [29]
    Yang W S. Carleson type measure characterization of Q p spaces. Analysis, 1998, 18: 345–349CrossRefzbMATHGoogle Scholar
  30. [30]
    Yang W S. Vanishing Carleson type measure characterization of Q p,0. C R Math Rep Acad Sci Canada, 1999, 21 (1): 1–5zbMATHGoogle Scholar
  31. [31]
    Zhang X J. The pointwise multipliers of Bloch type space β p and Dirichlet type space D q on the unit ball of ℂn. J Math Anal Appl, 2003, 285: 376–386MathSciNetCrossRefGoogle Scholar
  32. [32]
    Zhang X, Xiao J, Hu Z, Liu Y, Xiong D, Wu Y. Equivalent characterization and application of F(p, q, s) space in ℂn. Acta Mathematica Sinica, 2011, 54: 1029–1042 (in Chinese)MathSciNetzbMATHGoogle Scholar
  33. [33]
    Zhang X J, He C Z, Cao F F. The equivalent norms of F(p, q, s) space in ℂn. J Math Anal Appl, 2013, 401: 601–610MathSciNetCrossRefzbMATHGoogle Scholar
  34. [34]
    Zhao R H. On a general family of function spaces. Ann Acad Sci Fenn Math Dissertations, 1996, 105: 56MathSciNetzbMATHGoogle Scholar
  35. [35]
    Zhao R H. Pointwise multipliers from weighted Bergman spaces and Hardy spaces to weighted Bergman spaces. Annales Academiæ Scientiarum Fennicæ, 2004, 29: 139–150MathSciNetzbMATHGoogle Scholar
  36. [36]
    Zhao R H, Zhu K H. Theory of Bergman Spaces in the unit ball of ℂn. Mem Soc Math Fr, 2008, 115 Google Scholar
  37. [37]
    Zhu K H. Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics. Vol 226. New York: Springer-Verlag, 2005Google Scholar

Copyright information

© Wuhan Institute Physics and Mathematics, Chinese Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of MathematicsWuhan University of TechnologyWuhanChina
  2. 2.Department of Statistics and MathematicsShanghai Lixin University of Accounting and FinanceShanghaiChina

Personalised recommendations