Advertisement

Acta Mathematica Scientia

, Volume 39, Issue 1, pp 243–258 | Cite as

Kam Tori for Defocusing Kdv-Mkdv Equation

  • Wenyan Cui (崔文艳)Email author
  • Lufang Mi (弭鲁芳)
  • Li Yin (尹枥)
Article

Abstract

In this paper, we consider small perturbations of the KdV-mKdV equation
$${u_t} = - {u_{xxx}} + 6u{u_x} + 6{u^2}{u_x}$$
on the real line with periodic boundary conditions. It is shown that the above equation admits a Cantor family of small amplitude quasi-periodic solutions under such perturbations. The proof is based on an abstract infinite dimensional KAM theorem.

Key words

quasi-periodic solution KdV-mKdV equation KAM theory normal form 

2010 MR Subject Classification

37K55 35Q53 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bourgain J. Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE. International Mathematics Research Notices, 1994, 1994(11): 475–497MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Bourgain J. Recent progress on quasi-periodic lattice Schrödinger operators and Hamiltonian PDEs. Russian Math Surveys Russian Mathematical Surveys, 2004, 59(2): 37–52MathSciNetGoogle Scholar
  3. [3]
    Baldi P, Berti M, Montalto R. KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Mathematische Annalen, 2014, 359(1/2): 471–536MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Baldi P, Berti M, Montalto R. KAM for quasi-linear KdV. Comptes Rendus Mathematique, 2014, 352(7/8): 603–607MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    Berti M, Biasco L, Procesi M. KAM theory for the Hamiltonian derivative wave equations. Annales Scientifiques De Lécole Normale Supérieure, 2013, 46(2): 301–373MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Craig W, Wayne C E. Newton’s method and periodic solutions of nonlinear wave equations. Communications on Pure & Applied Mathematics, 1993, 46(11): 1409–1498MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Fan E. Uniformly constructing a series of exact solutions to nonlinear equations in mathematical physics. Chaos Solitons & Fractals, 2003, 16(5): 819–839MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Huang Y, Wu Y, Meng F, Yuan W. All exact traveling wave solutions of the combined KdV-mKdV equation. Advances in Difference Equations, 2014, 2014(1): 261MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Kuksin S B. Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum. Functional Analysis & Its Applications, 1987, 21(3): 192–205MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Kuksin S B. On small-denominators equations with large variable coefficients. Zeitschrift Für Angewandte Mathematik Und Physik Zamp, 1997, 48(2): 262–271MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Kuksin S B. Analysis of Hamiltonian PDEs. Oxford: Oxford Univ Press, 2000zbMATHGoogle Scholar
  12. [12]
    Kuksin S B. Fifteen years of KAM for PDE. Geometry Topology & Mathematical Physics, 2002: 237–258Google Scholar
  13. [13]
    Kappeler T, Pöschel J. KdV & KAM. Berlin, Heidelberg: Springer-Verlag, 2003CrossRefzbMATHGoogle Scholar
  14. [14]
    Lu D, Shi Q. New solitary wave solutions for the combined KdV-MKdv equation. Journal of Information & Computational Science, 2010, 8(8): 1733–1737Google Scholar
  15. [15]
    Liu J, Yuan X. A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations. Communications in Mathematical Physics, 2011, 307(3): 629–673MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Liu J, Yuan X. Spectrum for quantum duffing oscillator and small-divisor equation with large-variable coefficient. Communications on Pure & Applied Mathematics, 2010, 63(9): 1145–1172MathSciNetzbMATHGoogle Scholar
  17. [17]
    Liu J, Yuan X. KAM for the derivative nonlinear Schrödinger equation with periodic boundary conditions. Journal of Differential Equations, 2014, 256: 1627–1652MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Mohamad MNB. Exact Solutions to the combined KdV and MKdV equation. Mathematical Methods in the Applied Sciences, 1992, 15(2): 73–78MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    Yan K K, Axelsen J, Maslov S. Wave propatation in nonlinear lattice. Wave Propagation in nonlinear lattice II. Journal of the Physical Society of Japan, 1975, 38(3): 673Google Scholar
  20. [20]
    Lax P D. Development of singularities of solutions of nonlinear hyperbolic partial differential equations. Journal of Mathematical Physics, 2004, 5(5): 611–613MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    Yang X, Tang J. New travelling wave solutions for combined KdV-mKdV equation and (2+1)-dimensional Broer-Kaup-Kupershmidt systemNew travelling wave solutions for combined KdV-mKdV equation and (2+1)-dimensional Broer-Kaup-Kupershmidt system. Chinese Phy, Series B, 2007, 16(2): 310–317Google Scholar
  22. [22]
    Shi Y, Xu J. KAM tori for defocusing modified KdV equation. Journal of Geometry & Physics, 2015, 90: 1–10MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    Wayne C E. Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Communications in Mathematical Physics, 1990, 127(3): 479–528MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    Xu S, Yan D. Smooth quasi-periodic solutions for the perturbed mKdV equation. Communications on Pure & Applied Analysis, 2016, 15(5): 1857–1869MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    Zhang J, Gao M, Yuan X. KAM tori of reversible partial differential equation. Nonlinearity, 2011, 24: 1189–1228MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    Zhang J. New solitary wave solution of the combined KdV and mKdV equation. Int J Theor Phys, 1998, 37: 1541–1546MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Wuhan Institutes of Physics and Mathematics, Chinese Academy of Sciences 2019

Authors and Affiliations

  • Wenyan Cui (崔文艳)
    • 1
    Email author
  • Lufang Mi (弭鲁芳)
    • 1
  • Li Yin (尹枥)
    • 1
  1. 1.College of ScienceBinzhou UniversityBinzhouChina

Personalised recommendations