Annals of Mathematics and Artificial Intelligence

, Volume 87, Issue 3, pp 293–319 | Cite as

Practical reasoning using values: an argumentative approach based on a hierarchy of values

  • Juan C. L. TezeEmail author
  • Antoni Perelló-Moragues
  • Lluis Godo
  • Pablo Noriega


Values are at the heart of human decision-making. They are used to decide whether something or some state of affairs is good or not, and they are also used to address the moral dilemma of the right thing to do under given circumstances. Both uses are present in several everyday situations, from the design of a public policy to the negotiation of employee benefit packages. Both uses of values are specially relevant when one intends to design or validate that artificial intelligent systems behave in a morally correct way. In real life, the choice of policy components or the agreed upon benefit package are processes that involve argumentation. Likewise, the design and deployment of value-driven artificial entities may be well served by embedding practical reasoning capabilities in these entities or using argumentation for their design and certification processes. In this paper, we propose a formal framework to support the choice of actions of a value-driven agent and arrange them into plans that reflect the agent’s preferences. The framework is based on defeasible argumentation. It presumes that agent values are partially ordered in a hierarchy that is used to resolve conflicts between incommensurable values.


Practical reasoning Defeasible argumentation Hierarchy of values 

Mathematics Subject Classification (2010)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are indebted to the anonymous reviewers for their in-depth constructive comments and suggestions that have help to significantly improve the paper. Teze acknowledges partial support by CONICET, Universidad Nacional del Sur (UNS), and Universidad Nacional de Entre Ríos (UNER), Argentina. Perelló-Moragues is supported with an AGAUR industrial doctoral grant sponsored by FCC AQUALIA, IIIA-CSIC, and UAB. Godo, Perelló-Moragues and Noriega acknowledge the AppPhil project (funded by Caixa Bank, RecerCaixa 2017) and the Spanish FEDER/ MINECO project CIMBVAL (TIN2017-89758-R). Godo’s work is also supported by the Spanish FEDER/ MINECO project RASO (TIN2015-71799-C2-1-P).


  1. 1.
    Amgoud, L.: A formal framework for handling conflicting desires. In: 7th European conference symbolic and quantitative approaches to reasoning with uncertainty, ECSQARU 2003, Aalborg, Denmark, July 2-5, 2003. Proceedings. pp. 552–563 (2003)Google Scholar
  2. 2.
    Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable arguments. Ann. Math. Artif. Intell. 34(1-3), 197–215 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Amgoud, L., Devred, C., Lagasquie-Schiex, M.C.: A constrained argumentation system for practical reasoning. In: AAMAS. pp. 429–436 (2008)Google Scholar
  4. 4.
    Anonymous: I Am Part of the Resistance Inside the Trump Administration. Op-Ed, The New York Times, Sep 5. (2018)
  5. 5.
    Atkinson, K., Bench-Capon, T.: Practical reasoning as presumptive argumentation using action based alternating transition systems. Artif. Intell. 171(10-15), 855–874 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Atkinson, K., Bench-Capon, T.J.M.: States, goals and values: Revisiting practical reasoning. Argument & Computation 7(2-3), 135–154 (2016)CrossRefGoogle Scholar
  7. 7.
    Atkinson, K., Bench-Capon, T.J.M., McBurney, P.: Computational representation of practical argument. Synthese 152(2), 157–206 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Awad, E., Dsouza, S., Kim, R., Schulz, J., Henrich, J., Shariff, A., Bonnefon, J.F., Rahwan, I.: The moral machine experiment. Nature p. 1 (2018)Google Scholar
  9. 9.
    Besnard, P., Garcia, A., Hunter, A., Modgil, S., Prakken, H., Simari, G., Toni, F.: Introduction to structured argumentation. Argument & Computation 5(1), 1–4 (2014)CrossRefGoogle Scholar
  10. 10.
    Besnard, P., Hunter, A.: Elements of argumentation, vol. 47. MIT Press, Cambridge (2008)CrossRefGoogle Scholar
  11. 11.
    Bondarenko, A., Toni, F., Kowalski, R.A.: An assumption-based framework for non-monotonic reasoning. In: Proceedings of the 2nd International Workshop, Logic Programming and Non-monotonic Reasoning, Lisbon, Portugal, June 1993. pp. 171–189 (1993)Google Scholar
  12. 12.
    Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A.D. (eds.): Handbook of Computational Social Choice. Cambridge University Press, Cambridge (2016)Google Scholar
  13. 13.
    Bratman, M.E., Israel, D.J., Pollack, M.E.: Plans and resource-bounded practical reasoning. Comput. Intell. 4, 349–355 (1988)CrossRefGoogle Scholar
  14. 14.
    Coste-Marquis, S., Konieczny, S., Mailly, J., Marquis, P.: On the revision of argumentation systems: Minimal change of arguments statuses. In: Principles of Knowledge Representation and Reasoning: Proceedings of the 14th International Conference, KR 2014, Vienna, Austria, July 20-24, 2014 (2014)Google Scholar
  15. 15.
    Diller, M., Haret, A., Linsbichler, T., Ru̇mmele, S., Woltran, S.: An extension-based approach to belief revision in abstract argumentation. Int. J. Approx. Reasoning 93, 395–423 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Doutre, S., Herzig, A., Perrussel, L.: A dynamic logic framework for abstract argumentation. In: Principles of knowledge representation and reasoning: Proceedings of the 14th International Conference, KR 2014, Vienna, Austria, July 20-24, 2014 (2014)Google Scholar
  17. 17.
    Doutre, S., Mailly, J.: Constraints and changes: a survey of abstract argumentation dynamics. Argument & Computation 9(3), 223–248 (2018)CrossRefGoogle Scholar
  18. 18.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Floridi, L. (ed.): The Onlife Manifesto. Springer International Publishing, Berlin (2015)Google Scholar
  20. 20.
    García, A. J., Simari, G.R.: Defeasible logic programming: An argumentative approach. Theory and Practice of Logic Programming (TPLP) 4(1-2), 95–138 (2004)MathSciNetCrossRefGoogle Scholar
  21. 21.
    García, D.R., García, A.J., Simari, G.R.: Defeasible reasoning and partial order planning. In: 5th International Symposium Foundations of Information and Knowledge Systems, FoIKS 2008, Pisa, Italy, February 11-15, 2008, Proceedings. pp. 311–328 (2008)Google Scholar
  22. 22.
    Gärdenfors, P.: Manipulation of social choice functions. J. Econ. Theory 13(2), 217–228 (1976)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Gottifredi, S., García, A. J., Simari, G.R.: Argumentation systems and agent programming languages. In: AAAI Fall Symposium: the uses of Computational Argument. pp. 27–32 (2009)Google Scholar
  24. 24.
    Jager, W., Edmonds, B.: Policy making and modelling in a complex world. In: Janssen, M., Wimmer, M. A., Deljoo, A (eds.) Policy Practice and Digital Science: Integrating Complex Systems, Social Simulation and Public Administration in Policy Research, pp. 57–73. Springer International Publishing, Cham (2015)Google Scholar
  25. 25.
    Kuboyama, T.: Matching and Learning in Trees. University of Tokyo, Doctoral Thesis (2007)Google Scholar
  26. 26.
    Lifschitz, V.: Foundations of logic programs. In: Brewka, G (ed.) Principles of Knowledge Representation, pp. 69–128, CSLI Pub (1996)Google Scholar
  27. 27.
    Mercuur, R., Dignum, V., Jonker, C.: The use of values for modeling social agents. In: Bai, Q., Ren, F., Zhang, M., to, T. (eds.) Proceedings of the 3rd International Workshop on Smart Simulation and Modelling for Complex Systems (2017)Google Scholar
  28. 28.
    Miceli, M., Castelfranchi, C.: A cognitive approach to values. J. Theory Soc. Behav. 19(2), 169–193 (1989)CrossRefGoogle Scholar
  29. 29.
    Modgil, S., Prakken, H.: The ASPIC+ framework for structured argumentation: a tutorial. Argument & Computation 5(1), 31–62 (2014)CrossRefGoogle Scholar
  30. 30.
    Parks, L., Guay, R.P.: Personality, values, and motivation. Personal. Individ. Differ. 47(7), 675–684 (2009)CrossRefGoogle Scholar
  31. 31.
    Parks, L., Guay, R.P.: Personality, values, and motivation. Pers. Individ. Differ. 47(7), 675–684 (2009)CrossRefGoogle Scholar
  32. 32.
    Perelló-Moragues, A., Noriega, P.: Using agent-based simulation to understand the role of values in policy-making. In: Proceedings of the Social Simulation Conference 2018 (SSC2018) (In Press)Google Scholar
  33. 33.
    Van de Poel, I.: Values in engineering design. In: Meijers, A.W.M. (ed.) Handbook of the Philosophy of Science, pp. 973–1006. Elsevier (2009)Google Scholar
  34. 34.
    van de Poel, I.: Translating values into design requirements. In: Michelfelder, D. P., McCarthy, N., Goldberg, D. E. (eds.) Philosophy and Engineering: Reflections on Practice, Principles and Process, pp. 253–266. Springer, Netherlands (2013)Google Scholar
  35. 35.
    Rahwan, I., Amgoud, L.: An argumentation based approach for practical reasoning. In: AAMAS. pp. 347–354 (2006)Google Scholar
  36. 36.
    Reiss, S.: Multifaceted nature of intrinsic motivation: the theory of 16 basic desires. Rev. Gen. Psychol. 8(3), 179–193 (2004)CrossRefGoogle Scholar
  37. 37.
    Rizzo, A.: Ethically aligned design, version 2. (2017)
  38. 38.
    Rokeach, M.: The Nature of Human Values. Free Press (1973)Google Scholar
  39. 39.
    Rotstein, N.D., García, A. J., Simari, G.R.: Reasoning from desires to intentions: a dialectical framework. In: AAAI. pp. 136–141 (2007)Google Scholar
  40. 40.
    Russell, S.: Provably beneficial artificial intelligence. The Next Step: Exponential Life BBVA-Open Mind (2017)Google Scholar
  41. 41.
    Schulz, C., Martin-Ortega, J., Glenk, K., Ioris, A.A.: The value base of water governance. Ecol. Econ. 131, 241–249 (2017)CrossRefGoogle Scholar
  42. 42.
    Schwartz, S.H.: Universals in the content and structure of values: theoretical advances and empirical tests in 20 countries. In: Advances in Experimental Social Psychology, vol. 25, pp. 1–65. Elsevier (1992)Google Scholar
  43. 43.
    Schwartz, S.H., Bilsky, W.: Toward a universal psychological structure of human values. J. Pers. Soc. Psychol. 53(3), 550 (1987)CrossRefGoogle Scholar
  44. 44.
    Schwartz, S.H., Bilsky, W.: Toward a theory of the universal content and structure of values: extensions and cross-cultural replications. J. Pers. Soc. Psychol. 58(5), 878 (1990)CrossRefGoogle Scholar
  45. 45.
    Sinnott-Armstrong, W.: Consequentialism. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, winter 2015 edn (2015)Google Scholar
  46. 46.
    Velmovitsky, P.E., Briot, J., Viana, M.L., Lucena, C.: Practical reasoning in an argumentation-based decision BDI agent: a case study for participatory management of protected areas. In: The 29th International Conference on Software Engineering and Knowledge Engineering, Wyndham Pittsburgh University Center, Pittsburgh, PA, USA, July 5-7, 2017. pp. 527–530 (2017)Google Scholar
  47. 47.
    van der Weide, T.L., Dignum, F., Meyer, J.C., Prakken, H., Vreeswijk, G.: Practical reasoning using values. In: Argumentation in Multi-agent Systems, 6th International Workshop, ArgMAS 2009, Budapest, Hungary, May 12, 2009. Revised Selected and Invited Papers. pp. 79–93 (2009)Google Scholar
  48. 48.
    van der Weide, T.L., Dignum, F., Meyer, J.C., Prakken, H., Vreeswijk, G.: Arguing about preferences and decisions. In: Argumentation in Multi-agent Systems - 7th International Workshop, ArgMAS 2010, Toronto, ON, Canada, May 10, 2010 Revised, Selected and Invited Papers. pp. 68–85 (2010)Google Scholar
  49. 49.
    Wooldridge, M., van der Hoek, W.: On obligations and normative ability: towards a logical analysis of the social contract. J. Appl. Log. 3(3-4), 396–420 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Juan C. L. Teze
    • 1
    • 2
    Email author
  • Antoni Perelló-Moragues
    • 3
  • Lluis Godo
    • 3
  • Pablo Noriega
    • 3
  1. 1.Department of Computer Science and Engineering, Institute for Computer Science and Engineering (UNS-CONICdET)Universidad Nacional del Sur - Alem 1253Bahía Blanca Bs. As.Argentina
  2. 2.Agents and Intelligent Systems Area, Faculty of Management SciencesUniversidad Nacional de Entre Ríos - Tavella 1424Concordia E. R.Argentina
  3. 3.Artificial Intelligence Research Institute (IIIA-CSIC)BarcelonaSpain

Personalised recommendations