Advertisement

Changing channels: divergent approaches to the creative streaming of texts

  • Tony VealeEmail author
Article
  • 11 Downloads

Abstract

Text is an especially malleable medium for human and machine creativity. When guided by the appropriate symbolic and/or statistical models, even a small and seemingly superficial change at the formal level can result in a predictable yet profound change at the semantic and pragmatic level. Text is also a virtually unlimited resource on the web, which offers abundant, free-flowing channels of topical texts for almost every genre and register. In this paper we consider diverse approaches to transforming these input channels into new and creative streams of machine-generated outputs. We focus on the specific kind of linguistic creativity associated with metaphor, yet also demonstrate that divergent approaches to metaphor generation can, in turn, enable divergent uses and applications for machine creativity.

Keywords

Metaphor Computational creativity Twitterbots Divergent thinking Story generation 

Mathematics Subject Classification (2010)

68T50 68T30 68T35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Barnden, J.: Metaphor and metonymy: making their connections more slippery. Cognitive Linguistics 21(1), 1–34 (2010)CrossRefGoogle Scholar
  2. 2.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)zbMATHGoogle Scholar
  3. 3.
    Brants, T., Franz, A.: Web 1T 5-gram Version 1. Linguistic Data Consortium (2006)Google Scholar
  4. 4.
    Chung, C.K., Pennebaker, J.W.: Revealing dimensions of thinking in open-ended self-descriptions: an automated meaning extraction method for natural language. J. Res. Pers. 46, 96–132 (2008)CrossRefGoogle Scholar
  5. 5.
    Davidson, D.: What metaphors mean. Crit. Inq. (Special Issue on Metaphor) 5(5), 31–47 (1978)CrossRefGoogle Scholar
  6. 6.
    Dostoevsky, F.: Notes from the Underground: Part I: Chapter IX. Vintage Classics. Random House, New York (1864)Google Scholar
  7. 7.
    Landauer, T.K., Dumais, S.T.: A solution to Plato’s problem: the latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychol. Rev. 104(2), 211–240 (1997)CrossRefGoogle Scholar
  8. 8.
    Fauconnier, G., Turner, M.: Conceptual integration networks. Cogn. Sci. 22(2), 133–187 (1998)CrossRefGoogle Scholar
  9. 9.
    Fauconnier, G., Turner, T.: The Way We Think: Conceptual Blending and the Mind’s Hidden Complexities. Basic Books, New York (2002)Google Scholar
  10. 10.
    Gatti, L., Guerini, M., Stock, O., Strapparava, C.: Sentiment variations in text for persuasion technology. In: Proceedings of the 9th International Conference on Persuasive Technology, pp. 106–117 (2014)Google Scholar
  11. 11.
    Gatti, L., Ozbal, G., Guerini, M., Stock, O., Strapparava, C.: Slogans are not forever: adapting linguistic expressions to the news. In: Proceedings of IJCAI’15, the 24th International Conference on Artificial Intelligence, pp. 2452–2458 (2015)Google Scholar
  12. 12.
    Gatti, L., Ozbal, G., Guerini, M., Stock, O., Strapparava, C.: Heady-lines: a creative generator of newspaper headlines. In: Companion Publication of the 2016 International Conference on Intelligent User Interfaces, pp. 79–83 (2016)Google Scholar
  13. 13.
    Gentner, D.: Structure-mapping: a theoretical framework. Cogn. Sci. 7(2), 155–170 (1983)CrossRefGoogle Scholar
  14. 14.
    Gentzkow, M., Shapiro, J.M.: What drives media slant? Evidence from the U.S. daily newspapers. Econometrica 78(1), 35–37 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Guerini, M., Strapparava, C., Stock, O.: Slanting existing text with Valentino. In: Proceedings of the 16th International Conference on Intelligent User Interfaces, pp. 439–440 (2011)Google Scholar
  16. 16.
    Guilford, J.P.: Creativity. Am. Psychol. 5(9), 444–454 (1950)CrossRefGoogle Scholar
  17. 17.
    Jordanous, A.: Evaluating evaluation: assessing progress and practices in computational creativity research. In: Veale, T., Cardoso, A. (eds.) Computational Creativity: the Philosophy and Engineering of Autonomously Creative Systems. Springer International (2018)Google Scholar
  18. 18.
    Kintsch, W.: Metaphor comprehension: a computational theory. Psychon. Bull. Rev. 7(2), 257–266 (2000)CrossRefGoogle Scholar
  19. 19.
    Koestler, A.: The Act of Creation. Hutchinson, London (1964)Google Scholar
  20. 20.
    Lakoff, G.: Women, Fire, and Dangerous Things. University of Chicago Press, Chicago (1987)CrossRefGoogle Scholar
  21. 21.
    Lakoff, G., Johnson, M.: We Live By. University of Chicago Press, Chicago (1980)Google Scholar
  22. 22.
    Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv:1301.3781 [CS], January (2013)
  23. 23.
    Raskin, V.: Semantic Mechanisms of Humor. Reidel, Dordrecht (1985)Google Scholar
  24. 24.
    Řehůřek, R., Sojka, P.: Software framework for topic modeling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pp. 45–50 (2010)Google Scholar
  25. 25.
    Steen, G.: Developing, testing and interpreting deliberate metaphor theory. J. Pragmat. 90, 67–72 (2015)CrossRefGoogle Scholar
  26. 26.
    Thagard, P., Stewart, T.C.: The AHA! experience: creativity through emergent binding in neural networks. Cogn. Sci. 35(1), 1–33 (2010)CrossRefGoogle Scholar
  27. 27.
    Utsumi, A.: Interpretive diversity explains metaphor-simile distinction. Metaphor. Symb. 12, 291–312 (2007)CrossRefGoogle Scholar
  28. 28.
    Utsumi, A.: Computational exploration of metaphor comprehension processes using a semantic space model. Cognit. Sci. 35(2), 251–296 (2011)CrossRefGoogle Scholar
  29. 29.
    Veale, T.: Incongruity in humor: root cause or epiphenomenon? Humor: International Journal of Humor Research 17(4), 419–428 (2005)Google Scholar
  30. 30.
    Veale, T.: Déjà vu all over again: on the creative value of familiar elements in the telling of original tales. In: Proceedings of ICCC2017, the 8th International Conference on Computational Creativity, Atlanta, Georgia, June 19–23 (2017)Google Scholar
  31. 31.
    Veale, T., Li, G.: Creative introspection and knowledge acquisition. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence. AAAI Press, San Francisco (2011)Google Scholar
  32. 32.
    Veale, T.: The agile cliché: using flexible stereotypes as building blocks in the construction of an affective lexicon. In: Oltramari, A., Vossen, P., Qin, L., Hovy, E. (eds.) New Trends of Research in Ontologies and Lexical Resources. Berlin: Springer: Theory and Applications of Natural Language Processing (2013)Google Scholar
  33. 33.
    Veale, T.: The shape of tweets to come: automating language play in social networks. In: Bell, N. (ed.) Multiple Perspectives on Language Play. Mouton De Gruyter, Language Play and Creativity series, pp. 73–92 (2016)Google Scholar
  34. 34.
    Veale, T., Alnajjar, K.: Grounded for life: creative symbol-grounding for lexical invention. Connect. Sci. 28(2), 139–154 (2016)CrossRefGoogle Scholar
  35. 35.
    Veale, T., Cook, M.T.: Twitterbots: Making Machines that Make Meaning. MIT Press, Cambridge (2018)Google Scholar
  36. 36.
    Veale, T., Valitutti, A.: Tweet dreams are made of this: appropriate incongruity in the dreamwork of language. LINGUA 197, 141–153 (2017)CrossRefGoogle Scholar
  37. 37.
    Veale, T., Feyaerts, K.J., Forceville, C.J.: E Unis Pluribum: using mental agility to achieve creative duality in word, image and sound. In: Veale, T., Feyaerts, K., Forceville, C. (eds.) Creativity and the Agile Mind: a Multi-Disciplinary Study of a Multi-Faceted Phenomenon, pp. 37–57. Mouton de Gruyter (2013)Google Scholar
  38. 38.
    Veale, T., Shutova, E., Beigman Klebanov, B.: Metaphor: A Computational Perspective. Morgan Claypool Lectures on Human Language Technologies (2016)Google Scholar
  39. 39.
    Veale, T., Chen, H., Li, G.: I read the news today, oh boy! Making metaphors topical, timely and humorously personal. In: Proceedings of HCII 2017, Track on Distributed, Ambient and Pervasive Interactions, Vancouver, Canada (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity College DublinDublinIreland

Personalised recommendations