Advertisement

Passive–active integrators chaotic oscillator with anti-parallel diodes: analysis and its chaos-based encryption application to protect electrocardiogram signals

  • Justin Roger Mboupda PoneEmail author
  • Serdar Çiçek
  • Sifeu Takougang Kingni
  • Alain Tiedeu
  • Martin Kom
Article
  • 51 Downloads

Abstract

An autonomous passive–active integrators oscillator with anti-parallel diodes is proposed and analysed in this paper. It consists of anti-parallel diodes and two main blocks: A second-order passive RLC integrator and a first-order active RC integrator. The existence of two Hopf bifurcations is established during the stability analysis of the unique equilibrium point. For a suitable choice of the circuit parameters, the proposed oscillator can generate periodic oscillations, one-scroll, bistable chaotic attractors and antimonotonicity. The electronic circuit realization of the proposed oscillator is carried out to confirm results found during the numerical simulations. A good qualitative agreement is illustrated between the numerical simulations and experimental results. In addition, chaos-based encryption application to protect electrocardiogram (ECG) signals for secure transmission of medical information is performed using the proposed oscillator in chaotic regime. The ECG signals are successfully encrypted and the original ECG signal is successfully decrypted from noisy ECG signals.

Keywords

Passive–active integrator oscillator Anti-parallel diodes Hopf bifurcation Bistable chaotic attractors Electronic circuit experiment Chaos-based encryption of ECG signals 

Notes

Acknowledgements

Authors would like to thank Mr. Marc Esperance Songolo (Department of Mathematics and Computer Science, University of Lubumbashi, Lubumbashi, R.D. Congo) for interesting discussions on mathematical analysis and carefully reading the manuscript and Dr. Gaby Tchimmoue (College of Technology, University of Buea, Cameroon) for providing data on ECG signals.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

References

  1. 1.
    Platt, C., & Jansson, F. (2017). Encyclopedia of electronic components. (Vol. 3., 6, 10 Ed.). McGraw-Hill, Encyclopedia of Science and Technology, ISBN 97814493341852. 1Google Scholar
  2. 2.
    Schubert, T. F., Jr., & Kim, E. M. (2016). Fundamentals of electronics: Book 4 oscillators and advanced electronics topics. Synthesis Lectures on Digital Circuits and Systems,11(2), 1–266.CrossRefGoogle Scholar
  3. 3.
    Elwakil, A. S., & Kennedy, M. P. (2001). Construction of classes of circuit-independent chaotic oscillators using passive-only nonlinear devices. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,48(3), 289–307.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Tamasevicius, A., Mykolaitis G., & Cenys, A. (1998). Chaos diode. In IEEE proceedings—circuits, devices and systems (vol. 145, No. 5, pp. 361–362).Google Scholar
  5. 5.
    Abarbanel, H. D. I., Brown, R., & Kadtke, J. B. (1990). Prediction in chaotic nonlinear systems: Methods for time series with broadband Fourier spectra. Physical Review A,41, 1782–1807.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Strogatz, S. H. (2018). Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Boca Raton: CRC Press.zbMATHCrossRefGoogle Scholar
  7. 7.
    Toli, I. M., Mosekilde, E., & Sturis, J. (2000). Modeling the insulin glucose feedback system: The significance of pulsatile insulin secretion. Journal of Theoretical Biology,207, 361–375.CrossRefGoogle Scholar
  8. 8.
    Wei, Z., Moroz, I., Sprott, J. C., Akgul, A., & Zhang, W. (2017). Hidden hyperchaos and electronic circuit application in a 5d self-exciting homopolar disc dynamo. Chaos, an Interdisciplinary Journal of Nonlinear Science,27, 033101–0331012.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Ma, J., Wang, Q.-Y., Jin, W.-Y., & Xia, Y.-F. (2018). Control chaos in hindmarshrose neuron by using intermittent feedback with one variable. Chinese Physics Letters,25, 3582–3585.Google Scholar
  10. 10.
    Hemati, N. (1994). Strange attractors in brushless dc motors. IEEE Transaction on circuit and System,41, 40–45.CrossRefGoogle Scholar
  11. 11.
    Kocarev, L., & Lian, S. (2011). Chaos-based cryptography: Theory, algorithms and applications (1st ed.). Berlin: Springer.zbMATHCrossRefGoogle Scholar
  12. 12.
    Gatta, M. T., & Al-latief, S. T. A. (2018). Medical image security using modified chaos-based cryptography approach. Journal of Physics: Conference Series,1003(1), 012036.Google Scholar
  13. 13.
    Zhao, Q., Meng, F., Guo, Y., & Shi, W. (2018). Experimental demonstration of message transmission over an optical fiber link modulated by an ultra-wideband carrier generated by a chaotic laser diode. JOSA B,35(7), 1642–1648.CrossRefGoogle Scholar
  14. 14.
    Sotner, R., Jerabek, J., Herencsar, N., Petrzela, J., Vrba, K., & Kincl, Z. (2014). Linearly tunable quadrature oscillator derived from LCcolpitts structure using voltage differencing transconductance amplifier and adjustable current amplifier. Analog Integrated Circuits and Signal Processing,81, 121–136.CrossRefGoogle Scholar
  15. 15.
    Muthuswamy, B., & Chua, L. O. (2010). Simplest chaotic circuit. International Journal of Bifurcation and Chaos,20, 1567–1580.CrossRefGoogle Scholar
  16. 16.
    Teng, L., Iu, H. H. C., Wang, X., & Wang, X. (2014). Chaotic behavior in fractional-order memristor-based simplest chaotic circuit using fourth degree polynomial. Nonlinear Dynamics,77, 231–241.CrossRefGoogle Scholar
  17. 17.
    Karthikeyan, R., Anitha, K., & Prakash, D. (2018). Difference equations of a memristor higher order hyperchaotic oscillator. African Journal of Science, Technology, Innovation and Development,10, 279–285.CrossRefGoogle Scholar
  18. 18.
    Fortuna, L., Frasca, M., & Xibilia, M. G. (2009). World scientific series on nonlinear science series A: Chua’s circuit implementations (Yesterday, Today and Tomorrow). The four-element Chua’s circuit. Singapore: World Scientific.Google Scholar
  19. 19.
    Njah, A. N., & Vincent, U. E. (2009). Synchronization and anti-synchronization of chaos in an extended bonhffervan der pol oscillator using active control. Journal of Sound and Vibration,319, 41–49.CrossRefGoogle Scholar
  20. 20.
    Trejo-Guerra, R., Tlelo-Cuautle, E., Sanchez-Lopez, M., Munoz-Pacheco, J. M., & Cruz-Hernandez, C. (2010). Realization of multiscroll chaotic attractors by using current feedback operational amplifiers. Revista Mexicana de Fisica,56, 268–274.Google Scholar
  21. 21.
    Sprott, J. C. (2000). Simple chaotic systems and circuits. American Journal of Physics,68, 758–763.CrossRefGoogle Scholar
  22. 22.
    Srisuchinwong, B., & Munmuangsaen, B. (2012). Four current-tunable chaotic oscillators in set of two diode-reversible pairs. Electronics Letters,48, 1051–1053.CrossRefGoogle Scholar
  23. 23.
    San-Um, W., Suksiri, B., & Ketthong, P. (2014). A simple RLCC-diode-op amp chaotic oscillator. International Journal of Bifurcation and Chaos,24, 1450155–1450161.zbMATHCrossRefGoogle Scholar
  24. 24.
    Sprott, J. C. (1997). Simplest dissipative chaotic flow. Physics Letters A,228(4–5), 271–274.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Sprott, J. C. (2000). A new class of chaotic circuit. Physics Letters A,266(1), 19–23.CrossRefGoogle Scholar
  26. 26.
    Srisuchinwong, B., & Treetanakorn, R. (2014). Current-tunable chaotic jerk circuit based on only one unity-gain amplifier. Electronics Letters,50(24), 1815–1817.CrossRefGoogle Scholar
  27. 27.
    Pham, V. T., Volos, C., Jafari, S., Wang, X., & Kapitaniak, T. (2016). A simple chaotic circuit with a light-emitting diode. Optoelectronics and Advanced Materials Rapid Communications,10(9–10), 640–646.Google Scholar
  28. 28.
    Kengne, J. (2015). Coexistence of chaos with hyperchaos, period-3 doubling bifurcation, and transient chaos in the hyperchaotic oscillator with gyrators. International Journal of Bifurcation and Chaos,25(04), 1550052.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Kengne, J., Tabekoueng, Z. N., & Fotsin, H. B. (2016). Coexistence of multiple attractors and crisis route to chaos in autonomous third order Duffing–Holmes type chaotic oscillators. Communications in Nonlinear Science and Numerical Simulation,36, 29–44.MathSciNetCrossRefGoogle Scholar
  30. 30.
    Mboupda Pone, J. R., Kingni, S. T., Kol, G. R., & Pham, V. T. (2019). Hopf bifurcation, antimonotonicity and amplitude controls in the chaotic Toda jerk oscillator: Analysis, circuit realization and combination synchronization in its fractional-order form. Automatika,60(2), 149–161.CrossRefGoogle Scholar
  31. 31.
    Elwakil, A. S., & Kennedy, M. P. (2000). A semi-systematic procedure for producing chaos from sinusoidal oscillators using diode-inductor and FET-capacitor composites. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,47(4), 582–590.CrossRefGoogle Scholar
  32. 32.
    Banerjee, T., Karmakar, B., & Sarkar, B. C. (2012)., Chaotic electronic oscillator from single amplifier biquad. AEU-International Journal of Electronics and Communications,66(7), 593–597.CrossRefGoogle Scholar
  33. 33.
    Njitacke, Z. T., & Kengne, L. K. (2017). Antimonotonicity, chaos and multiple coexisting attractors in a simple hybrid diode-based jerk circuit. Chaos, Solitons and Fractals,105, 77–91.MathSciNetCrossRefGoogle Scholar
  34. 34.
    Leutcho, G. D., Kengne, J., & Kamdjeu Kengne, L. (2018). Dynamical analysis of a novel autonomous 4-D hyperjerk circuit with hyperbolic sine nonlinearity: Chaos, antimonotonicity and a plethora of coexisting attractors. Chaos, Solitons and Fractals,107, 67–87.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Kengne, J., Njitacke, Z. T., Nguomkam Negou, A., Fouodji Tsostop, M., & Fotsin, H. B. (2016). Coexistence of multiple attractors and crisis route to chaos in a novel chaotic jerk circuit. International Journal of Bifurcation and Chaos,26(05), 1650081.zbMATHCrossRefGoogle Scholar
  36. 36.
    Kingni, S. T., Pone, J. R. M., Kuiate, G. F., & Pham, V. T. (2019). Coexistence of attractors in integer-and fractional-order three-dimensional autonomous systems with hyperbolic sine nonlinearity: Analysis, circuit design and combination synchronisation. Pramana,93(1), 12.CrossRefGoogle Scholar
  37. 37.
    Volos, C., Akgul, A., Pham, V. T., Stouboulos, I., & Kyprianidis, I. (2017). A simple chaotic circuit with a hyperbolic sine function and its use in a sound encryption scheme. Nonlinear Dynamics,89(2), 1047–1061.CrossRefGoogle Scholar
  38. 38.
    Bao, B., Wu, H., Xu, L., Chen, M., & Hu, W. (2018). Coexistence of multiple attractors in an active diode pair based Chua’s circuit. International Journal of Bifurcation and Chaos,28(02), 1850019.MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Chen, C. K., Lin, C. L., Chiang, C. T., & Lin, S. L. (2012). Personalized information encryption using ECG signals with chaotic functions. Information Sciences,193, 125–140.CrossRefGoogle Scholar
  40. 40.
    El Assad, S., & Farajallah, M. (2016). A new chaos-based image encryption system. Signal Processing: Image Communication,41, 144–157.Google Scholar
  41. 41.
    Alawida, M., Samsudin, A., The, J. S., & Alkhawaldeh, R. S. (2019). A new hybrid digital chaotic system with applications in image encryption. Signal Processing,160, 45–58.CrossRefGoogle Scholar
  42. 42.
    Roy, A., Misra, A. P., & Banerjee, S. (2019). Chaos-based image encryption using vertical-cavity surface-emitting lasers. Optik-International Journal of for Light and Electron Optics,176, 119–131.CrossRefGoogle Scholar
  43. 43.
    Liu, H., Kadir, A., & Li, Y. (2016). Audio encryption scheme by confusion and diffusion based on multi-scroll chaotic system and one-time keys. Optik-International Journal of for Light and Electron Optics,127, 7431–7438.CrossRefGoogle Scholar
  44. 44.
    Azzaz, M. S., Tanougast, C., Sadoudi, S., & Bouridane, A. (2013). Synchronized hybrid chaotic generators: application to real-time wireless speech encryption. Communications in Nonlinear Science and Numerical Simulation,18, 2035–2047.MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Martín del Rey, A., Hernández Pastora, J. L., & Rodríguez, S. G. (2016). 3D medical data security protection. Expert Systems with Application,54, 379–386.CrossRefGoogle Scholar
  46. 46.
    Chen, X., & Hu, C. J. (2017). Adaptive medical image encryption algorithm based on multiple chaotic mapping. Saudi Journal of Biological Sciences,24, 1821–1827.CrossRefGoogle Scholar
  47. 47.
    İsmail, S. M., Said, L. A., Radwan, A. G., Madian, A. H., & Abu-Elyazeed, M. F. (2018). Generalized double-humped logistic map-based medical image encryption. Journal of Advanced Research,10, 85–98.CrossRefGoogle Scholar
  48. 48.
    Bhatnagar, G., & Wu, Q. M. J. (2015). A novel chaos-based secure transmission of biometric data. Neurocomputing,147, 444–455.CrossRefGoogle Scholar
  49. 49.
    Pandey, A., Singh, B., Saini, B. S., & Sood, N. (2019). A novel fused coupled chaotic map based confidential data embedding-then-encryption of electrocardiogram signal. Biocybernetics and Biomedical Engineering,39, 282–300.CrossRefGoogle Scholar
  50. 50.
    Moosavi, S. R., Nigussie, E., Virtanen, S., & Isoaho, J. (2017). Cryptographic key generation using ECG signals. In: 14th IEEE annual consumer communications and networking conference (CCNC) (pp. 2331–9860).Google Scholar
  51. 51.
    Tuncer, S. A., & Kaya, T. (2018). True random number generation from bioelectrical and physical signals. In: Computational and mathematical methods in medicine (Vol. 2018, Article ID 3579275).Google Scholar
  52. 52.
    Millman, J. (1967). Electronic devices and circuits [by] Jacob Millman [and] Christos C. Halkias: McGraw-Hill.Google Scholar
  53. 53.
    Manoj, J., & Ashish, R. (2019). New simple chaotic and hyperchaotic system with an unstable node. International Journal of Electronics and Communications (AEÜ),108(2019), 1–9.Google Scholar
  54. 54.
    Bier, M., & Boutis, T. C. (1984). Remerging Feigenbaum trees in dynamical systems. Physics Letters A,104, 239–244.MathSciNetCrossRefGoogle Scholar
  55. 55.
    Kyprianidis, I. M., Stouboulos, I. N., & Haralabidis, P. (2000). Antimonotonicity and chaotic dynamics in a fourth-order autonomous nonlinear electric circuit. International Journal of Bifurcation and Chaos,10, 1903–1911.CrossRefGoogle Scholar
  56. 56.
    Kaya, T. (2019). A true random number generator based on a Chua and RO-PUF: design, implementation and statistical analysis. Analog Integrated Circuits and Signal Processing.  https://doi.org/10.1007/s10470-019-01474-2.CrossRefGoogle Scholar
  57. 57.
    Tuncer, T. (2016). The implementation of chaos-based PUF designs in field programmable gate array. Nonlinear Dynamics,86, 975–986.CrossRefGoogle Scholar
  58. 58.
    Sprott, J. C. (2011). A proposed standard for the publication of new chaotic systems. International Journal of Bifurcation and Chaos,21(09), 2391–2394.CrossRefGoogle Scholar
  59. 59.
    Kom, G. H., Kengne, J., Mboupda Pone, J. R., Kenne, G., & Tiedeu, A. B. (2018). Asymmetric double strange attractors in a simple autonomous jerk circuit. Complexity, 2018, 4658785.  https://doi.org/10.1155/2018/4658785.CrossRefGoogle Scholar
  60. 60.
    Signing, V. F., Kengne, J., & Mboupda Pone, J. R. (2019). Antimonotonicity, chaos, quasi-periodicity and coexistence of hidden attractors in a new simple 4-D chaotic system with hyperbolic cosine nonlinearity. Chaos, Solitons and Fractals,118, 187–198.MathSciNetCrossRefGoogle Scholar
  61. 61.
    Kingni, S. T., Mboupda Pone, J. R., Kuiate, G. F., & Pham, V. T. (2019). Coexistence of attractors in integer-and fractional-order three-dimensional autonomous systems with hyperbolic sine nonlinearity: Analysis, circuit design and combination synchronisation. Pramana,93(1), 12.CrossRefGoogle Scholar
  62. 62.
    Joshi, M., & Ranjan, A. (2019). An autonomous chaotic and hyperchaotic oscillator using OTRA. In Analog integrated circuits and signal processing (pp. 1–13).Google Scholar
  63. 63.
    Tamaševičius, A., Bumelienė, S., Kirvaitis, R., Mykolaitis, G., Tamaševičiūtė, E., & Lindberg, E. (2009). Autonomous Duffing–Holmes type chaotic oscillator. Elektronika ir Elektrotechnika,5(93), 43–46.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Unit of Automation and Applied Computer (RU-AIA), Electrical Engineering Department of IUT-FVUniversity of DschangBandjounCameroon
  2. 2.Department of Electronic and Automation, Vocational School of HacıbektaşNevşehir Hacı Bektaş Veli UniversityHacıbektaşTurkey
  3. 3.Department of Mechanical, Petroleum and Gas Engineering, Faculty of Mines and Petroleum IndustriesUniversity of MarouaMarouaCameroon
  4. 4.Signal, Image and Systems Laboratory, HTTTC, EbolowaUniversity of Yaoundé IEbolowaCameroon
  5. 5.Laboratoire de Génie Electrique Mécatronique et Traitement du Signal (LGEMTS), GRETMAT Team, Electrical Engineering Department of National Advanced School of Engineering, ENSPUniversity of Yaoundé IYaoundéCameroon

Personalised recommendations