Analog Integrated Circuits and Signal Processing

, Volume 101, Issue 3, pp 651–657 | Cite as

A 2.99 dB NF 15.6 dB Gain 3-10GHz Ultra-wideband low-noise amplifier for UWB systems in 65 nm CMOS

  • Peng Luo
  • Maliang LiuEmail author
  • Long Chen
  • Ji Gao
  • Zhangming Zhu
  • Yintang Yang


A low noise figure (NF) and high power gain (S21) 3–10 GHz ultra-wideband (UWB) low noise amplifier (LNA) in 65 nm CMOS technology is proposed for UWB system which has a high figure of merit. A shunt–shunt resistive feedback technique is used to achieve wideband input impedance matching. A differential current-reused structure is used to achieve high common noise suppression and low power consumption. The implemented LNA achieves a high and flat aS21 of 15.6 ± 1.07 dB with an input return loss (S11) which is better than − 8.7 dB and a low NF of 2.99 ± 0.18 dB at frequencies of 3–10 GHz. The measured input third-order intermodulation point (IIP3) is − 5.7 dBm at 6 GHz.


CMOS Ultra-wideband (UWB) Low noise amplifier (LNA) Noise figure 



The funding was provided by National Natural Science Foundation of China (Grand No. 61874082).


  1. 1.
    Lin, Y. S., Chen, C. Z., Yang, H. Y., et al. (2010). Analysis and design of a CMOS UWB LNA with dual-RLC-branch wideband input matching network. IEEE Transactions on Microwave Theory and Techniques,58(2), 287–296.CrossRefGoogle Scholar
  2. 2.
    Galal, A. I. A., Pokharel, R. K., Kanay, H., et al. (2010). Ultra-wideband low noise amplifier with shunt resistive feedback in 0.18 µm CMOS process. In Silicon monolithic integrated circuits in RF systems, IEEE, pp. 33–36.Google Scholar
  3. 3.
    Arshad, S., Zafar, F., Ramzan, R., et al. (2013). Wideband and multiband CMOS LNAs. Microelectronics Journal,44(9), 774–786.CrossRefGoogle Scholar
  4. 4.
    Hsu, M. T., Hsieh, Y. C., & Ou, A. C. (2012). Design of low power UWB CMOS LNA using RC feedback and body-bias technology. In International conference on Asic, IEEE, pp. 1–4.Google Scholar
  5. 5.
    Chen, K. H., & Liu, S. I. (2012). Inductorless wideband CMOS low-noise amplifiers using noise-canceling technique. IEEE Transactions on Circuits and Systems I: Regular Papers,59(2), 305–314.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Pandey, S., Gawande, T., & Kondekar, P. N. (2017). A 0.9 V, 4.57 mW UWB LNA with improved gain and low power consumption for 3.1–10.6 GHz ultra-wide band applications. Wireless Personal Communications,96(1), 583–597.CrossRefGoogle Scholar
  7. 7.
    Nigam, S., & Sau, P. C. (2016). Design of UWB LNA using active resistors in 0.18 µm CMOS technology. In Communication, control and intelligent systems, IEEE, pp. 393–397.Google Scholar
  8. 8.
    Najari, O. E., Arnborg, T., & Alvandpour, A. (2010). Wideband inductorless LNA employing simultaneous 2nd and 3rd order distortion cancellation. In Norchip, IEEE, pp. 1–4.Google Scholar
  9. 9.
    Pan, Z., Qin, C., Ye, Z., et al. (2017). Wideband inductorless low-power LNAs with Gm enhancement and noise-cancellation. IEEE Transactions on Circuits and Systems I: Regular Papers,PP(99), 1.Google Scholar
  10. 10.
    Dai, R., Zheng, Y., He, J., et al. (2014). A 2.5-GHz 8.9-dBm IIP3 current-reused LNA in 0.18-μm CMOS technology. In IEEE international symposium on radio-frequency integration technology, IEEE, pp. 1–3.Google Scholar
  11. 11.
    Erfani, R., Marefat, F., & Ehsanian, M. (2014). Self-biased resistive-feedback current-reused CMOS UWB LNA with 1.7 dB nf for IR-UWB applications. In International conference on microelectronics, IEEE, pp. 132–135.Google Scholar
  12. 12.
    Guo, J. C., Lin, C. S., & Liang, Y. T. (2017). Low voltage and low power UWB CMOS LNA using current-reused and forward body biasing techniques. In Microwave symposium, IEEE, pp. 764–767.Google Scholar
  13. 13.
    Yang, H. Y., Lin, Y. S., & Chen, C. C. (2008). 2.5 dB NF 3.1–10.6 GHz CMOS UWB LNA with small group-delay variation. Electronics Letters,44(8), 528–529.CrossRefGoogle Scholar
  14. 14.
    Wu, L., Leung, H. F., & Luong, H. C. (2017). Design and analysis of CMOS LNAs with transformer feedback for wideband input matching and noise cancellation. IEEE Transactions on Circuits and Systems I: Regular Papers,PP(99), 1–10.Google Scholar
  15. 15.
    Wu, C., Lin, Y., & Wang, C. (2013). A 3.1–10.6-GHz current-reused CMOS ultra-wideband low-noise amplifier using self-forward body bias and forward combining techniques. Microwave and Optical Technology Letters,55(10), 2296–2302.CrossRefGoogle Scholar
  16. 16.
    Li, N., Feng, W., & Li, X. (2017). A CMOS 3–12-GHz ultrawideband low noise amplifier by dual-resonance network. IEEE Microwave and Wireless Components Letters,27(4), 383–385.CrossRefGoogle Scholar
  17. 17.
    Hsu, M. T., Chang, Y. C., & Huang, Y. Z. (2013). Design of low power UWB LNA based on common source topology with current-reused technique. Microelectronics Journal,44(12), 1223–1230.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Peng Luo
    • 1
  • Maliang Liu
    • 1
    Email author
  • Long Chen
    • 1
  • Ji Gao
    • 1
  • Zhangming Zhu
    • 1
  • Yintang Yang
    • 1
  1. 1.Xidian UniversityXi’anChina

Personalised recommendations