Advertisement

EEG entropies as estimators for the diagnosis of encephalopathy

  • Jisu Elsa JacobEmail author
  • Gopakumar Kuttappan Nair
Article
  • 6 Downloads

Abstract

Brain consists of a network of millions of neurons and the neural activities of the brain are clearly pictured in its signal, electroencephalogram (EEG). Many pathological conditions of brain can be studied in detail by inspecting the EEG signal in detail rather than just visual inspection. Non linear analysis has proved to be an efficient method for exploring the subtle information embedded in EEG. Approximate entropy and sample entropy are utilized in this study for comparing EEGs of patients with a neurological disease called encephalopathy, with normal EEGs. Both entropies were found to be significantly less (p < 0.01; independent sample t test) for encephalopathy group than normal healthy controls. Support vector machine, multilayer perceptron and random forest classifiers have been employed for identifying disease groups based on the EEG entropies and their performance were evaluated. Random forest classifier gave the maximum accuracy of 90% while multilayer perceptron and SVM classifier gave an accuracy of 87% and 84% respectively. The optimum performance was obtained by combining both approximate entropies and sample entropies as features to the classifiers, than using individual set of features. Thus, this work emphasizes that entropies of EEG are good bio-markers for the diagnosis of encephalopathy and that non linear analysis techniques should be employed for analyzing EEG signals.

Keywords

EEG Encephalopathy Approximate entropy Sample entropy Random forest classifier Multi-layer perceptron classifier Support vector machine classifier 

Notes

Acknowledgements

Authors would like to thank Dr. Thomas Iype, Professor and Head of Neurology, Government Medical College, Thiruvananthapuram and Dr. Ajith Cherian, Associate Professor, SCTIMST, Thiruvananthapuram for their careful verification of EEG recordings and validation of data collected for this work, effective discussions about various neurological diseases and for giving us information about various methods of EEG acquisition. Authors would like to thank the authorities of Government Medical College, Thiruvananthapuram for giving permission for EEG data collection needed for this study.

References

  1. 1.
    Niedermeyer, E., & da Silva, F. L. (2005). Electroencephalography: Basic principles, clinical applications, and related fields. London: Lippincott Williams & Wilkins.Google Scholar
  2. 2.
    Musgrave, H., & Hilsabeck, R. C. (2019). Hepatic encephalopathy. In: L. Ravdin & H. Katzen (Eds.), Handbook on the neuropsychology of aging and dementia (pp. 689–710). Cham: Springer.CrossRefGoogle Scholar
  3. 3.
    Angel, M. J., & Young, G. B. (2011). Metabolic encephalopathies. Neurologic Clinics, 29(4), 837–882.CrossRefGoogle Scholar
  4. 4.
    Demir, A. B., Bora, I., Kaygili, E., & Ocakoglu, G. (2014). The assessment of basic features of electroencephalography in metabolic encephalopathies. Journal of Neurology Research, 4(4), 101–109.Google Scholar
  5. 5.
    Foley, J., Watson, C., & Adams, R. (1950). Significance of the electroencephalographic changes in hepatic coma. Transactions of the American Neurological Association, 51, 161.Google Scholar
  6. 6.
    Bickford, R. G., & Butt, H. R. (1955). Hepatic coma: The electroencephalographic pattern. The Journal of Clinical Investigation, 34(6), 790–799.CrossRefGoogle Scholar
  7. 7.
    Parsons-Smith, B., Summerskill, W., Dawson, A., & Sherlock, S. (1957). The electroencephalograph in liver disease. The Lancet, 270(7001), 867–871.CrossRefGoogle Scholar
  8. 8.
    Bahamon-Dussan, J. E., Celesia, G. G., & Grigg-Damberger, M. M. (1989). Prognostic significance of EEG triphasic waves in patients with altered state of consciousness. Journal of Clinical Neurophysiology: Official Publication of the American Electroencephalographic Society, 6(4), 313–319.CrossRefGoogle Scholar
  9. 9.
    Faigle, R., Sutter, R., & Kaplan, P. W. (2013). The electroencephalography of encephalopathy in patients with endocrine and metabolic disorders. Journal of Clinical Neurophysiology: Official Publication of the American Electroencephalographic Society, 30(5), 505–516.CrossRefGoogle Scholar
  10. 10.
    Kannathal, N., Choo, M. L., Acharya, U. R., & Sadasivan, P. (2005). Entropies for detection of epilepsy in EEG. Computer Methods and Programs in Biomedicine, 80(3), 187–194.CrossRefGoogle Scholar
  11. 11.
    Veisi, I., Pariz, N., & Karimpour, A. (2007). Fast and robust detection of epilepsy in noisy EEG signals using permutation entropy. In 2007 IEEE 7th international symposium on bioinformatics and bioengineering, 2007 (pp. 200–203). IEEE.Google Scholar
  12. 12.
    Ocak, H. (2009). Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Systems with Applications, 36(2), 2027–2036.CrossRefGoogle Scholar
  13. 13.
    Kumar, Y., Dewal, M., & Anand, R. (2014). Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine. Neurocomputing, 133, 271–279.CrossRefGoogle Scholar
  14. 14.
    Jacob, J. E., Sreelatha, V. V., Iype, T., Nair, G. K., & Yohannan, D. G. (2016). Diagnosis of epilepsy from interictal EEGs based on chaotic and wavelet transformation. Analog Integrated Circuits and Signal Processing, 89(1), 131–138.CrossRefGoogle Scholar
  15. 15.
    Abásolo, D., Hornero, R., Espino, P., Poza, J., Sánchez, C. I., & de la Rosa, R. (2005). Analysis of regularity in the EEG background activity of Alzheimer’s disease patients with approximate entropy. Clinical Neurophysiology, 116(8), 1826–1834.CrossRefGoogle Scholar
  16. 16.
    Mizuno, T., Takahashi, T., Cho, R. Y., Kikuchi, M., Murata, T., Takahashi, K., et al. (2010). Assessment of EEG dynamical complexity in Alzheimer’s disease using multiscale entropy. Clinical Neurophysiology, 121(9), 1438–1446.CrossRefGoogle Scholar
  17. 17.
    Adeli, H., Zhou, Z., & Dadmehr, N. (2003). Analysis of EEG records in an epileptic patient using wavelet transform. Journal of Neuroscience Methods, 123(1), 69–87.CrossRefGoogle Scholar
  18. 18.
    Ting, W., Guo-zheng, Y., Bang-hua, Y., & Hong, S. (2008). EEG feature extraction based on wavelet packet decomposition for brain computer interface. Measurement, 41(6), 618–625.CrossRefGoogle Scholar
  19. 19.
    Subasi, A. (2005). Automatic recognition of alertness level from EEG by using neural network and wavelet coefficients. Expert Systems with Applications, 28(4), 701–711.CrossRefGoogle Scholar
  20. 20.
    Jacob, J. E., Nair, G. K., Iype, T., & Cherian, A. (2018). Diagnosis of encephalopathy based on energies of EEG subbands using discrete wavelet transform and support vector machine. Neurology Research International.  https://doi.org/10.1155/2018/1613456.CrossRefGoogle Scholar
  21. 21.
    Selesnick, I. W., Graber, H. L., Pfeil, D. S., & Barbour, R. L. (2014). Simultaneous low-pass filtering and total variation denoising. IEEE Transactions on Signal Processing, 62(5), 1109–1124.MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Figueiredo, M. A., Dias, J. B., Oliveira, J. P., & Nowak, R. D. (2006). On total variation denoising: A new majorization-minimization algorithm and an experimental comparison with wavalet denoising. In 2006 IEEE international conference on image processing, 2006 (pp. 2633–2636). IEEE.Google Scholar
  23. 23.
    John, T. N., Puthankattil, S. D., & Menon, R. (2018). Analysis of long range dependence in the EEG signals of Alzheimer patients. Cognitive Neurodynamics, 12(2), 183–199.CrossRefGoogle Scholar
  24. 24.
    Jacob, J. E., Nair, G. K., Cherian, A., & Iype, T. (2019). Application of fractal dimension for EEG based diagnosis of encephalopathy. Analog Integrated Circuits and Signal Processing, 100(2), 429–436.CrossRefGoogle Scholar
  25. 25.
    Ding, Y., & Selesnick, I. W. (2016). Sparsity-based correction of exponential artifacts. Signal Processing, 120, 236–248.CrossRefGoogle Scholar
  26. 26.
    Jacob, J. E., & Gopakumar, K. (2018). Automated diagnosis of encephalopathy using fractal dimensions of EEG sub-bands. In 2018 IEEE recent advances in intelligent computational systems (RAICS), 2018 (pp. 94–97). IEEE.Google Scholar
  27. 27.
    Mesin, L. (2018). Estimation of complexity of sampled biomedical continuous time signals using approximate entropy. Frontiers in Physiology, 9, 710.CrossRefGoogle Scholar
  28. 28.
    Pincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences, 88(6), 2297–2301.MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Akar, S. A., Kara, S., Latifoğlu, F., & Bilgiç, V. (2016). Analysis of the complexity measures in the EEG of schizophrenia patients. International Journal of Neural Systems, 26(02), 1650008.CrossRefGoogle Scholar
  30. 30.
    Sohn, H., Kim, I., Lee, W., Peterson, B. S., Hong, H., Chae, J.-H., et al. (2010). Linear and non-linear EEG analysis of adolescents with attention-deficit/hyperactivity disorder during a cognitive task. Clinical Neurophysiology, 121(11), 1863–1870.CrossRefGoogle Scholar
  31. 31.
    Wu, D.-Y., Cai, G., Yuan, Y., Liu, L., Li, G.-Q., Song, W.-Q., et al. (2011). Application of nonlinear dynamics analysis in assessing unconsciousness: A preliminary study. Clinical Neurophysiology, 122(3), 490–498.CrossRefGoogle Scholar
  32. 32.
    Koskinen, M., Seppanen, T., Tong, S., Mustola, S., & Thakor, N. V. (2006). Monotonicity of approximate entropy during transition from awareness to unresponsiveness due to propofol anesthetic induction. IEEE Transactions on Biomedical Engineering, 53(4), 669–675.CrossRefGoogle Scholar
  33. 33.
    Srinivasan, V., Eswaran, C., & Sriraam, N. (2007). Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Transactions on Information Technology in Biomedicine, 11(3), 288–295.CrossRefGoogle Scholar
  34. 34.
    Richman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039–H2049.CrossRefGoogle Scholar
  35. 35.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter, 11(1), 10–18.CrossRefGoogle Scholar
  36. 36.
    Şen, B., Peker, M., Çavuşoğlu, A., & Çelebi, F. V. (2014). A comparative study on classification of sleep stage based on EEG signals using feature selection and classification algorithms. Journal of Medical Systems, 38(3), 18.CrossRefGoogle Scholar
  37. 37.
    Vapnik, V., & Chapelle, O. (2000). Bounds on error expectation for support vector machines. Neural Computation, 12(9), 2013–2036.CrossRefGoogle Scholar
  38. 38.
    Lippmann, R. P. (1987). An introduction to computing with neural nets. IEEE ASSP Magazine, 4(2), 4–22.CrossRefGoogle Scholar
  39. 39.
    Madyastha, R. K., & Aazhang, B. (1994). An algorithm for training multilayer perceptrons for data classification and function interpolation. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 41(12), 866–875.zbMATHCrossRefGoogle Scholar
  40. 40.
    Sharma, R., Pachori, R. B., & Upadhyay, A. (2017). Automatic sleep stages classification based on iterative filtering of electroencephalogram signals. Neural Computing and Applications, 28(10), 2959–2978.CrossRefGoogle Scholar
  41. 41.
    Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man, and Cybernetics, 21(3), 660–674.MathSciNetCrossRefGoogle Scholar
  42. 42.
    Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32.zbMATHCrossRefGoogle Scholar
  43. 43.
    Fraiwan, L., Lweesy, K., Khasawneh, N., Wenz, H., & Dickhaus, H. (2012). Automated sleep stage identification system based on time–frequency analysis of a single EEG channel and random forest classifier. Computer Methods and Programs in Biomedicine, 108(1), 10–19.CrossRefGoogle Scholar
  44. 44.
    Subasi, A. (2007). EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Systems with Applications, 32(4), 1084–1093.CrossRefGoogle Scholar
  45. 45.
    Murugappan, M., Ramachandran, N., & Sazali, Y. (2010). Classification of human emotion from EEG using discrete wavelet transform. Journal of Biomedical Science and Engineering, 3(04), 390.CrossRefGoogle Scholar
  46. 46.
    Liu, Y., Zhou, W., Yuan, Q., & Chen, S. (2012). Automatic seizure detection using wavelet transform and SVM in long-term intracranial EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(6), 749–755.CrossRefGoogle Scholar
  47. 47.
    Jacob, J. E., Cherian, A., Gopakumar, K., Iype, T., Yohannan, D. G., & Divya, K. P. (2018). Can chaotic analysis of electroencephalogram aid the diagnosis of encephalopathy? Neurology Research International, 2018, 8.  https://doi.org/10.1155/2018/8192820.CrossRefGoogle Scholar
  48. 48.
    Jacob, J. E., Gopakumar, K., Iype, T., & Cherian, A. (2018). Automated diagnosis of encephalopathy based on empirical mode EEG decomposition. Neurophysiology.  https://doi.org/10.1007/s11062-018-9749-8.CrossRefGoogle Scholar
  49. 49.
    Kaplan, P. W., & Sutter, R. (2015). Affair with triphasic waves—their striking presence, mysterious significance, and cryptic origins: What are they? Journal of Clinical Neurophysiology, 32(5), 401–405.CrossRefGoogle Scholar
  50. 50.
    Amodio, P., Marchetti, P., Del Piccolo, F., De Tourtchaninoff, M., Varghese, P., Zuliani, C., et al. (1999). Spectral versus visual EEG analysis in mild hepatic encephalopathy. Clinical Neurophysiology, 110(8), 1334–1344.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Engineering and TechnologyLBS Centre for Science and TechnologyThiruvananthapuramIndia
  2. 2.Department of ECETKM College of EngineeringKollamIndia

Personalised recommendations