Advertisement

High-efficient two-step switching scheme for SAR ADC with dual-capacitive arrays and four-input comparator

  • Tengteng Chen
  • Jueping CaiEmail author
  • Xinyu Li
  • Xin Xin
  • Qi Shi
Mixed Signal Letter
  • 9 Downloads

Abstract

A high energy-efficient and area-saving two-step switching method for the dual-capacitive arrays (DCAs) successive approximation register (SAR) analogue-to-digital converter (ADC) is proposed. By adopting two-step architecture, spilt-capacitor method, monotonic switching scheme, four-input comparator and C–2C capacitor array, the proposed procedure achieves 99.84% saving in average switching energy and 84.38% reduction in total capacitance compared to the conventional scheme when applied to a 10-bit SAR ADC, meanwhile achieving DNL and INL only 0.234LSB and 0.281LSB, respectively. Furthermore, this method eliminates reset energy, while achieves a compromise among energy, area, and linearity.

Keywords

SAR ADC Four-input comparator Switching scheme Energy efficiency Two-step 

Notes

Acknowledgements

This work is supported by the innovation wisdom base for wide bandgap semiconductor and micro-nano electronics of China (B12026), the National Natural Science Foundation of China (61076031), Aeronautical Science Foundation of China (20120281), the Natural Science Foundation of Shaanxi Province, China (2019JQ553, 2016JM6067), Strategic international scientific and technological innovation cooperation key projects (2016YFE0207000).

References

  1. 1.
    Liu, C. C., Chang, S. J., Huang, G. Y., & Lin, Y. Z. (2010). A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure. IEEE Journal of Solid-State Circuits, 45(4), 731–740.CrossRefGoogle Scholar
  2. 2.
    Zhu, Y., Chan, C. H., Chio, U. F., & Sin, S. W. (2010). A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS. IEEE Journal of Solid-State Circuits, 46(6), 1111–1121.CrossRefGoogle Scholar
  3. 3.
    Srinivasan, S. R., & Balsara, P. T. (2014). Energy-efficient sub-DAC merging scheme for variable resolution SAR ADC. Electronics Letters, 50(20), 1421–1423.CrossRefGoogle Scholar
  4. 4.
    Yuan, C., & Lam, Y. (2012). Low-energy and area-efficient tri-level switching scheme for SAR ADC. Electronics Letters, 48(9), 482–483.CrossRefGoogle Scholar
  5. 5.
    Tong, X., & Ghovanloo, M. (2015). Energy-efficient switching scheme in SAR ADC for biomedical electronics. Electronics Letters, 51(9), 676–678.CrossRefGoogle Scholar
  6. 6.
    Xie, L., Wang, Y., Su, J., Liu, J., & Wen, G. (2017). Switching scheme with 98.4% switching energy reduction and high accuracy for SAR ADCs. Analog Integrated Circuits and Signal Processing, 90(3), 681–686.CrossRefGoogle Scholar
  7. 7.
    Ding, Z., Bai, W., & Zhu, Z. (2015). Trade-off between energy and linearity switching scheme for SAR ADC. Analog Integrated Circuits and Signal Processing, 86(1), 121–125.CrossRefGoogle Scholar
  8. 8.
    Xin, X., Cai, J., & Xie, R. (2018). 99.83% Switching energy reduction over conventional scheme for SAR ADC without reset energy. Analog Integrated Circuits and Signal Processing, 94(3), 519–528.CrossRefGoogle Scholar
  9. 9.
    Huang, J., Wu, J., & Wu, A. (2018). Two-step Vcm-based MS switching method with dual-capacitive arrays for SAR ADCs. Analog Integrated Circuits and Signal Processing, 94, 155–160.CrossRefGoogle Scholar
  10. 10.
    Zhang, C., Liu, S., & Zhu, Z. (2018). Two-step switching scheme for SAR ADC with high energy efficiency. Analog Integrated Circuits and Signal Processing, 96(1), 189–195.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Wide Bandgap Semiconductor Technology DisciplinesXidian UniversityXi’anChina

Personalised recommendations