Analog Integrated Circuits and Signal Processing

, Volume 101, Issue 3, pp 573–584 | Cite as

Dual active capacitive feedbacks for output capacitor-less low-dropout regulator

  • Chung-Cheng Su
  • Chung-Chih HungEmail author


An output capacitor-less low-dropout (OCL-LDO) voltage regulator with dual active feedback paths is presented in this paper. The dual active feedbacks provide frequency compensation and spike voltage suppression. Two feedback loops are formed by capacitors Cc and Ca, respectively. The capacitor Ca path detects output voltage to suppress undershoot and overshoot during load transient. The frequency compensation is achieved by capacitor Cc, which helps the LDO regulator not only improve stability, but also enhance transient response without large current consumption. The total utilized capacitance values are only 1.5 pF. The proposed OCL-LDO was fabricated in 0.18 μm CMOS technology with supply voltage of 1.8 V. The LDO consumes 21 μA of quiescent current and the chip area is 0.47 mm × 0.49 mm. The measured output voltage difference is 90 mV when the load current is increased from 50 μA to 100 mA with CL= 100 pF and recovery time less than 1 μs. The power supply rejection is − 51.7 dB at 1 kHz.


Output capacitor-less (OCL) Low dropout (LDO) voltage regulator Active feedback 



The authors would like to thank National Chip Implementation Center (CIC), Taiwan for their support on chip fabrication. This work was supported by Ministry of Science and Technology (MOST).


  1. 1.
    Rincon-Mora, G. A., & Allen, P. E. (1998). A low-voltage, low quiescent current, low drop-out regulator. IEEE Journal of Solid-State Circuits,33(1), 36–44.CrossRefGoogle Scholar
  2. 2.
    Chava, C. K., & Siulva-Martinez, J. (2004). A frequency compensation scheme for LDO voltage regulators. IEEE Transactions on Circuits and Systems I: Regular Papers,51(6), 1041–1050.CrossRefGoogle Scholar
  3. 3.
    Leung, K. N., & Mok, P. K. T. (2003). A capacitor-free CMOS low-dropout regulator with damping-factor-control frequency compensation. IEEE Journal of Solid-State Circuits,38(10), 1691–1702.CrossRefGoogle Scholar
  4. 4.
    Lau, S. K., Mok, P. K. T., & Leung, K. N. (2007). A low-dropout regulator for SoC with Q-reduction. IEEE Journal of Solid-State Circuits,2(3), 658–664.CrossRefGoogle Scholar
  5. 5.
    Man, T. Y., Mok, P. K. T., & Chan, M. (2007). A high slew-rate push-pull output amplifier for low-quiescent current low-dropout regulators with transient-response improvement. IEEE Transactions on Circuits and Systems II: Express Briefs,54(9), 755–759.CrossRefGoogle Scholar
  6. 6.
    Milliken, R. J., Silva-Martinez, J., & Sánchez-Sinencio, E. (2007). Full-on chip CMOS low-dropout voltage regulator. IEEE Transactions on Circuits and Systems I: Regular Papers,54(9), 1879–1890.CrossRefGoogle Scholar
  7. 7.
    Lam, Y. H., & Ki, W. H. (2008). A 0.9 V 0.35 m adaptively biased CMOS LDO regulator with fast transient response. In Proceedings of ISSCC Digest of Technical Papers (pp. 442–443).Google Scholar
  8. 8.
    Guo, J., & Leung, K. N. (2010). A 6-uW chip-area-efficient output-capacitorless LDO in 90-nm CMOS technology. IEEE Journal of Solid-State Circuits,45(9), 1896–1905.CrossRefGoogle Scholar
  9. 9.
    Ho, E. N. Y., & Mok, P. K. T. (2010). A capacitor-less CMOS active feedback low-dropout regulator with slew-rate enhancement for portable on-chip application. IEEE Transactions on Circuits and Systems II: Express Briefs,57(2), 80–84.CrossRefGoogle Scholar
  10. 10.
    Or, P. Y., & Leung, K. N. (2010). An output-capacitorless low-dropout regulator with direct voltage-spike detection. IEEE Journal of Solid-State Circuits,45(2), 458–466.CrossRefGoogle Scholar
  11. 11.
    Zhan, C., & Ki, W. H. (2010). Output-capacitor-free adaptively biased low-dropout regulator for system-on-chips. IEEE Transactions on Circuits and Systems I,57(5), 1017–1028.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Zhan, C., & Ki, W. H. (2012). An output-capacitor-free adaptively biased low-dropout regulator with subthreshold undershoot-reduction for SoC. IEEE Transactions on Circuits and Systems I: Regular Papers,59(5), 1119–1131.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ming, X., Li, Q., Zhou, Z.-K., & Zhang, B. (2012). An ultrafast adaptively biased capacitorless LDO with dynamic charging control. IEEE Transactions on Circuits and Systems II: Express Briefs,59(1), 40–44.CrossRefGoogle Scholar
  14. 14.
    Chen, C.-M., Hung, T.-W., & Hung, C.-C. (2013). Fast transient low-dropout voltage regulator with hybrid dynamic biasing technique for SoC application. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,21(9), 1742–1747.CrossRefGoogle Scholar
  15. 15.
    Chong, S. S., & Chan, P. K. (2013). A 0.9-μA quiescent current output capacitorless LDO regulator with adaptive power transistors in 65-nm CMOS. IEEE Transactions on Circuits and Systems I: Regular Papers,60(4), 1072–1081.CrossRefGoogle Scholar
  16. 16.
    Qu, X., Zhou, Z.-K., Zhang, B., & Li, Z.-J. (2013). An ultra-power fast transient capacitor free low-dropout regulator with assistant push–pull output stage. IEEE Transactions on Circuits and Systems II: Express Briefs,60(2), 96–100.CrossRefGoogle Scholar
  17. 17.
    Chong, S., & Chan, P. (2014). A sub-1V transient-enhanced output-capacitorless LDO regulator with push-pull composite power transistor. IEEE Transactions on VLSI Systems,22(11), 2297–2306.CrossRefGoogle Scholar
  18. 18.
    Zhan, C., & Ki, W.-H. (2014). Analysis and design of output-capacitor-free low-dropout regulators with low quiescent current and high power supply rejection. IEEE Transactions on Circuits and Systems I: Regular Papers,61(2), 625–636.CrossRefGoogle Scholar
  19. 19.
    Park, C.-J., Onabajo, M., & Silva-Martinez, J. (2014). External capacitor-less low drop-out regulator with 25 dB superior power supply rejection in the 0.4–4 MHz range. IEEE Journal of Solid-State Circuits,49(2), 486–501.CrossRefGoogle Scholar
  20. 20.
    Maity, A., & Patra, A. (2016). Tradeoffs aware design procedure for an adaptively biased capacitorless low dropout regulator using nested miller compensation. IEEE Transactions on Power Electronics,31(1), 369–380.CrossRefGoogle Scholar
  21. 21.
    Maity, A., & Patra, A. (2016). Analysis, design and performance evaluation of a dynamically slew enhanced adaptively biased capacitor-less low dropout regulator. IEEE Transactions on Power Electronics,31(3), 2324–2336.CrossRefGoogle Scholar
  22. 22.
    Hong, S. W., & Cho, G. H. (2016). High-gain wide bandwidth capacitor-less low dropout regulator (LDO) for mobile applications utilizing frequency response of multiple feedback loop. IEEE Transactions on Circuits and Systems I: Regular Papers,63(1), 46–57.CrossRefGoogle Scholar
  23. 23.
    Torres, J., et al. (2014). Low drop-out voltage regulators: Capacitor-less architecture comparison. IEEE Circuits and Systems Magazine,14(2), 6–26.CrossRefGoogle Scholar
  24. 24.
    Hazucha, P., Karnik, T., Bradley, B. A., Parsons, C., Finan, D., & Borkar, S. (2005). Area-efficient linear regulator with ultra-fast load regulation. IEEE Journal of Solid-State Circuits,40(4), 933–940.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations