Advertisement

Analog Integrated Circuits and Signal Processing

, Volume 101, Issue 3, pp 475–487 | Cite as

Digital pulse processing algorithm for neutron and gamma rays discrimination

  • M. E. Hammad
  • H. KasbanEmail author
  • R. M. Fikry
  • Moawad I. Dessouky
  • O. Zahran
  • Sayed M. S. Elaraby
  • Fathi E. Abd El-Samie
Article
  • 32 Downloads

Abstract

This paper presents a proposed algorithm for discriminating neutron and gamma radiation events. In the proposed algorithm, discriminating features are extracted from the input radiation event. These features are extracted using charge integration, matched filtering, and Discrete Wavelet Transform (DWT) methods. The extracted features are then fed into the discriminator which is an Artificial Neural Network (ANN) discriminator or a Support Vector Machine (SVM) discriminator. The obtained results prove that the proposed algorithms can be used efficiently for the neutron and gamma ray discrimination purpose and that the DWT based method achieves the highest discrimination rates. For discriminators, the SVM discriminator achieves better performance with a slightly shorter processing time compared to the ANN discriminator.

Keywords

Neutron and gamma ray discrimination PSD DPP SVM ANN 

Notes

References

  1. 1.
    Ranucci, G. (1995). An analytical approach to the evaluation of the pulse shape discrimination properties of scintillators. Nuclear Instruments and Methods,A354, 389–399.Google Scholar
  2. 2.
    Heltsley, J. H., Brandon, L., Galonsky, A., Heilbraun, L., Remington, B. A., Langer, S., et al. (1988). Particle identification via pulse shape discrimination with a charge-integrating ADC. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,A263, 441–445.Google Scholar
  3. 3.
    Sellin, P. J., Jaffar, G., & Jastaniah, S. D. (2004). Performance of digital algorithms for n/γ pulse shape discrimination using a liquid scintillation detector (pp. 1057-1060). IEEE.Google Scholar
  4. 4.
    Al-Shbatat, A. (2014). Analysis of the spectrum of radiation detectors. M.Sc. thesis, Faculty of Informatics Sciences, Masaryk University, Brno, Spring 2014.Google Scholar
  5. 5.
    Chuan, P. V., & Hai, N. X. (2018). Evaluating four neutron-gamma discrimination methods with EJ-301 scintillator. Analog Integrated Circuits and Signal Processing, 98(1), 1–10.Google Scholar
  6. 6.
    Qiao, H., Lu, C. Y., Chen, X., Han, K., Ji, X. D., & Wang, S. (2018). Signal-background discrimination with convolutional neural networks in the PandaX-III experiment using MC simulation. Science China Physics, Mechanics & Astronomy, 61, 101007-1–101007-9.Google Scholar
  7. 7.
    Liang, F., Brands, H., Hoy, L., Preston, J., & Smith, J. (2018). Lithium-loaded scintillators coupled to a custom-designed silicon photomultiplier array for neutron and gamma-ray detection. IEEE Transactions on Nuclear Science, 65(8), 1–8.Google Scholar
  8. 8.
    Yang, C. F., Feng, C. Q., Liu, S. B., & An, Q. (2017). FPGA-based n/ϒ pulse shape discrimination for BaF2 detector using 2-GSPS fast waveform sampling. Nuclear Science and Techniques, 28(2), 1–6.Google Scholar
  9. 9.
    Yang, K., Menge, P. R., & Ouspenski, V. (2017). Li Co-doped NaI: Tl (NaIL) a large volume neutron-gamma scintillator with exceptional pulse shape discrimination. IEEE Transactions on Nuclear Science,64(8), 2406–2413.Google Scholar
  10. 10.
    Clarke, S., Flaska, M., Pozzi, S., & Peerani, P. (2009). Neutron and gamma-ray cross-correlation measurements of plutonium oxide powder. Nuclear Instruments & Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment,604(3), 618–623.Google Scholar
  11. 11.
    Mellow, B. D., Aspinall, M. D., Mackin, R., Joyce, M., & Peyton, A. (2007). Digital discrimination of neutrons and γ-rays in liquid scintillators using pulse gradient analysis. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,578(1), 91–197.Google Scholar
  12. 12.
    Enqvist, A., Flaska, M., & Pozzi, S. (2008). Measurement and simulation of neutron/gamma-ray cross-correlation functions from spontaneous fission. Nuclear Instruments & Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment,595(2), 426–430.Google Scholar
  13. 13.
    Flaska, M., & Pozzi, S. A. (2009). Digital pulse shape analysis for the capture-gated liquid scintillator bc-523a. Nuclear Instruments & Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment,599(2–3), 221–225.Google Scholar
  14. 14.
    Guerrero, C., Cano-Ott, D., Fernández-Ordóñez, M., GonzálezRomero, E., Martínez, T., & Villamarín, D. (2008). Analysis of the BC501A neutron detector signals using the true pulse shape. Nuclear Instruments & Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment,597(2–3), 212–218.Google Scholar
  15. 15.
    Hamel, M., Frelin-Labalme, A. M., Simic, V., & Normand, S. (2009). N-(2′,5′-di-t-butylphenyl)-4-ethoxy-1,8-naphthalimide: A new fluorophore highly efficient for fast neutrons/gamma-rays discrimination in liquid media. Nuclear Instruments & Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment,602(2), 425–431.Google Scholar
  16. 16.
    Hawkes, N., Gamage, K., & Taylor, G. (2010). Digital approaches to field neutron spectrometry. Radiation Measurements,45(10), 1305–1308.Google Scholar
  17. 17.
    Lavagno, A., Gervino, G., & Marino, C. (2010). High efficiency large volume multi-parametric neutron detector. Nuclear Instruments & Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment,617(1–3), 492–494.Google Scholar
  18. 18.
    Pozzi, S., Clarke, S., Flaska, M., & Peerani, P. (2009). Pulse-height distributions of neutron and gamma rays from plutonium-oxide samples. Nuclear Instruments & Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment,608(2), 310–315.Google Scholar
  19. 19.
    Rochman, D., Haight, R., Donnell, J. O., Devlin, M., Ethvignot, T., & Granier, T. (2004). Neutron induced reaction studies at FIGARO using a spallation source. Nuclear Instruments & Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment,523(1–2), 102–115.Google Scholar
  20. 20.
    Schiffer, R. T., Flaska, M., Pozzi, S. A., Carney, S., & Wentzloff, D. D. (2011). A scalable FPGA-based digitizing platform for radiation data acquisition. Nuclear Instruments & Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment,652(1), 491–493.Google Scholar
  21. 21.
    Černý, J., Doležal, Z., Ivanov, M. P., Kuzmin, E. S., Švejda, J., & Wilhelm, I. (2004). Study of neutron response and n-γ discrimination by charge comparison method for small liquid scintillation detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,527(3), 512–518.Google Scholar
  22. 22.
    Villano, A., Becchetti, F., Kolata, J., Ojaruega, M., & Roberts, A. (2011). Efficiency measurements of deuterated liquid scintillators using d(d, n)3He coincidence events. Nuclear Instruments & Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment,652(1), 280–283.Google Scholar
  23. 23.
    Belli, F., Esposito, B., Marocco, D., & Riva, M. (2013). A study on the pulse height resolution of organic scintillator digitized pulses. Fusion Engineering and Design,88(6–8), 1271–1275.Google Scholar
  24. 24.
    Marrone, S., et al. (2002). Pulse shape analysis of liquid scintillator for neutron studies. Nuclear Instruments & Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors, and Associated Equipment,490, 299–307.Google Scholar
  25. 25.
    Funk, C. C., Theiler, J., Roberts, D. A., & Borel, C. C. (2001). Clustering to improve matched filter detection of weak gas plumes in hyperspectral thermal imagery. IEEE Transactions on Geoscience and Remote Sensing,39(7), 1410–1420.Google Scholar
  26. 26.
    Prochazka, A., Uhlir, P., Rayner, W., & Kingsbury, N. (1998). Signal analysis and prediction. Basel: Birkhauser Inc.zbMATHGoogle Scholar
  27. 27.
    Kasban, H., Zahran, O., Arafa, H., El-Kordy, M., Elaraby, S. M. S., & El-Samie, F. E. A. (2015). Support vector machines and artificial neural networks for identification of residence time distribution signals. International Journal of Engineering,6(3), 1803–1808.Google Scholar
  28. 28.
    Kasban, H., Zahran, O., Arafa, H., El-Kordy, M., Elaraby, S. M. S., & El-Samie, F. E. A. (2011). Welding defect detection from radiographic image using cepstral approach. Nondestructive Testing and Evaluation (NTD&E),44(2), 226–231.Google Scholar
  29. 29.
    Zahran, O., Kasban, H., El-Kordy, M., & El-Samie, F. E. A. (2013). Automatic weld defect identification from radiographic images. Nondestructive Testing and Evaluation (NTD&E),57, 26–35.Google Scholar
  30. 30.
    Hsu, C. W., Chang, C. C., & Lin, C. J. (2007). A practical guide to support vector classification. National Taiwan Uni, Taipei 106, Taiwan.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Engineering DepartmentNuclear Research Center, Atomic Energy AuthorityCairoEgypt
  2. 2.Department of Electronics and Electrical Communications Engineering, Faculty of Electronic EngineeringMenofia UniversityMenoufEgypt

Personalised recommendations