Advertisement

Analog Integrated Circuits and Signal Processing

, Volume 101, Issue 3, pp 543–553 | Cite as

A ripple-based adaptive on-time controlled buck converter with slope balance technique

  • Chung-Cheng Su
  • Chung-Chih HungEmail author
Article
  • 100 Downloads

Abstract

A ripple-based adaptive on-time controlled buck converter with slope balance technique is presented in this paper. The slope balance technique provides a fixed switching frequency. A 4-bit single-slope analog-to-digital converter (ADC) was used to fix switching frequency when power supply was from 3.3 to 4.5 V. The slope balance technique is proposed to achieve an adaptive on-time control and without extra clock-controlled circuits and current sensing circuits. The input voltage can be predicted from the adaptive on-time by using 4-bit single-slope ADC control. Measurement results show that switching frequency is 1.448 and 1.438 MHz when load current is 200 and 1000 mA, respectively. The proposed buck converter was fabricated in 0.35 μm CMOS technology with a supply voltage of 4.5 V. The output voltage was measured to be 1.2 V and the load current range was determined to range 200–1000 mA.

Keywords

Dc–dc converter Adaptive on-time Fix switching frequency Ripple-based control Fast transient Heave load condition 

Notes

Acknowledgements

The authors would like to thank Taiwan Semiconductor Research Institute, Taiwan for their support on chip fabrication. This work was supported by Ministry of Science and Technology (MOST).

References

  1. 1.
    Rincon-Mora, G. A., & Allen, P. E. (1998). A low-voltage, low quiescent current, low drop-out regulator. IEEE Journal of Solid-State Circuits,33(1), 36–44.CrossRefGoogle Scholar
  2. 2.
    Chava, C. K., & Siulva-Martinez, J. (2004). A frequency compensation scheme for LDO voltage regulators. IEEE Transactions on Circuits and Systems I: Regular Papers,51(6), 1041–1050.CrossRefGoogle Scholar
  3. 3.
    Leung, K. N., & Mok, P. K. T. (2003). A capacitor-free CMOS low-dropout regulatorwith damping-factor-control frequency compensation. IEEE Journal of Solid-State Circuits,38(10), 1691–1702.CrossRefGoogle Scholar
  4. 4.
    Lau, S. K., Mok, P. K. T., & Leung, K. N. (2007). A low-dropout regulator for SoC with Q-reduction. IEEE Journal of Solid-State Circuits,2(3), 658–664.CrossRefGoogle Scholar
  5. 5.
    Man, T. Y., Mok, P. K. T., & Chan, M. (2007). A high slew-rate push-pull output amplifier for low-quiescent current low-dropout regulators with transient-response improvement. IEEE Transactions on Circuits and Systems II: Express Briefs,54(9), 755–759.CrossRefGoogle Scholar
  6. 6.
    Milliken, R. J., Silva-Martinez, J., & Sánchez-Sinencio, E. (2007). Full-on chip CMOS low-dropout voltage regulator. IEEE Transactions on Circuits and Systems I: Regular Papers,54(9), 1879–1890.CrossRefGoogle Scholar
  7. 7.
    Lam, Y. H., & Ki, W. H. (2008) A 0.9 V 0.35 m adaptively biased CMOS LDO regulator with fast transient response. In Proceeding of the ISSCC digest of technical papers (pp. 442–443).Google Scholar
  8. 8.
    Guo, J., & Leung, K. N. (2010). A 6-uW chip-area-efficient output-capacitorless LDO in 90-nm CMOS technology. IEEE Journal of Solid-State Circuits,45(9), 1896–1905.CrossRefGoogle Scholar
  9. 9.
    Ho, E. N. Y., & Mok, P. K. T. (2010). Acapacitor-less CMOS active feedback low-dropout regulator with slew-rate enhancement for portable on-chip application. IEEE Transactions on Circuits and Systems II: Express Briefs,57(2), 80–84.CrossRefGoogle Scholar
  10. 10.
    Or, P. Y., & Leung, K. N. (2010). An output-capacitorless low-dropout regulator with direct voltage-spike detection. IEEE Journal of Solid-State Circuits,45(2), 458–466.CrossRefGoogle Scholar
  11. 11.
    Balcells, J., Santolaria, A., Orlandi, A., Gonzalez, D., & Gago, J. (2005). EMI reduction in switched power converters using frequency modulation techniques. IEEE Transactions on Electromagnetic Compatibility,47(3), 569–576.CrossRefGoogle Scholar
  12. 12.
    Power Integrations, Inc. (2005). TOPSwitch power supply design techniques for EMI and safety. Application Note 15, Power Integrations, Inc., San Jose, CA, USA, April, 2005.Google Scholar
  13. 13.
    Huerta, S. C., Alou, P., Oliver, J. A., Garcia, O., Cobos, J. A., & Abou- Alfotouh, A. (2011). Non-linear control for DC-DC converters based on hystere- of sis the COUT current with a frequency loop to operate at constant frequency. IEEE Transactions on Industrial Electronics,58(3), 1036–1043.CrossRefGoogle Scholar
  14. 14.
    Zheng, Y., Chen, H., & Leung, K. N. (2012). A fast-response pseudo-PWM buck converter with PLL-based hysteresis control. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,20(7), 1167–1174.CrossRefGoogle Scholar
  15. 15.
    Sun, Z., Siek, L., Singh, R. P., & Je, M. (2014). A fixed-frequency hysteretic controlled buck DC-DC converter with improved load regulation. In 2014 IEEE international symposium on circuits and systems (ISCAS) (pp. 954–957).Google Scholar
  16. 16.
    Tso, C.-H., & Wu, J.-C. (2003). A ripple control buck regulator with fixed output frequency. IEEE Power Electronics Letters,1(3), 61–63.CrossRefGoogle Scholar
  17. 17.
    Su, F., Ki, W.-H., & Tsui, C.-Y. (2008). Ultra fast fixed-frequency hysteretic buck converter with maximum charging current control adaptive delay compensation for DVS application. IEEE Journal of Solid-State Circuits,43(4), 815–822.CrossRefGoogle Scholar
  18. 18.
    Li, P., Bhatia, D., Xue, L., & Bashirullah, R. (2011). A 90–240 MHz hysteretic controlled DC-DC buck converter with digital phase locked loop synchronization. IEEE Journal of Solid-State Circuits,46(9), 2108–2119.CrossRefGoogle Scholar
  19. 19.
    Khan, Q., Elshazly, A., Rao, S., Inti, R., & Hanumolu, P. K. (2012). A 900 mA 93% efficient 50 µA quiescent current fixed frequency hysteretic buck converter using a highly digital hybrid voltage-and current-mode control. In 2012 symposium on VLSI circuits (VLSIC) (pp. 182–183).Google Scholar
  20. 20.
    Lee, S.-H. et al. (2015). A 0.518 mm2 quasi-current-mode hysteretic buck DC-DC converter with 3 μs load transient response in 0.35 μm BCDMOS. In Proceeding of the IEEE international solid-state circuits conference digest technical papers (pp. 1–3).Google Scholar
  21. 21.
    Seo, J.-I., Lim, B.-M., & Lee, S.-G. (2018). A 96.5% efficiency current mode hysteretic buck converter with 1.2% error auto-selectable frequency locking. IEEE Transactions on Power Electronics,33(9), 7733–7743.CrossRefGoogle Scholar
  22. 22.
    Chen, W.-C., Wang, C.-S., Su, Y.-P., Lee, Y.-H., Lin, C.-C., & Chen, K.-H. (2013). Reduction of equivalent series inductor effect in delay-ripple reshaped constant on-time control for buck converter with multi-layer ceramic capacitors. IEEE Transactions on Power Electronics,28(5), 2366–2376.CrossRefGoogle Scholar
  23. 23.
    Tsai, C.-H., Lin, S.-M., & Huang, C.-S. (2013). A fast-transient quasi-V2 switching buck regulator using AOT control with a load current correction (LCC) technique. IEEE Transactions on Power Electronics,28(8), 3949–3957.CrossRefGoogle Scholar
  24. 24.
    Tsai, C.-H., Chen, B.-M., & Li, H.-L. (2016). Switching frequency stabilization techniques for adaptive on-time controlled buck converter with adaptive voltage positioning mechanism. IEEE Transactions on Power Electronics,31(1), 443–451.CrossRefGoogle Scholar
  25. 25.
    Chen, W.-C., et al. (2016). Pseudo-constant switching frequency in on-time controlled buck converter with predicting correction techniques. IEEE Transactions on Power Electronics,31(5), 3650–3662.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations