A 96.88% area-saving and 99.72% energy-reduction switching scheme for SAR ADC with a novel two-step quantisation technique

  • Rong Zhou
  • Shubin LiuEmail author
  • Jian Liu
  • Ruixue Ding
  • Jingyu Wang
  • Sheng Huang
  • Zhangming Zhu
Mixed Signal Letter


This paper presents a novel area-saving and energy-efficient switching capacitor structure for successive approximation register analog-to-digital conversions, which uses a two-step quantisation logic control switching scheme. The two steps are coarse and fine quantisation respectively. During the coarse quantisation, there is no power consumption at the first two cycles. The fine quantisation does not increase the number of binary capacitors while consumes no energy. Therefore, the two-step quantisation switching scheme can significantly reduce both the power consumption and the capacitor area. Simulation results show that the structure can reduce the average energy and the capacitor area by 99.72% and 96.88% respectively over the conventional method.


SAR ADC Switching scheme Energy-efficient Area-saving Single-sided switching Two-step quantisation Monotonic 



This work was supported by the National Natural Science Foundation of China (Nos. 61625403, 61874174, 61674118, 61874173, 61804110).


  1. 1.
    Mccreary, J. L., & Gray, P. R. (2003). All-mos charge redistribution analog-to-digital conversion techniques. IEEE Journal of Solid-State Circuits, 10(6), 371–379.CrossRefGoogle Scholar
  2. 2.
    Ginsburg, B. P., & Chandrakasan, A. P. (2005). An energy-efficient charge recycling approach for a SAR converter with capacitive DAC. In IEEE international symposium on circuits and systems (ISCAS) (pp. 184–187).Google Scholar
  3. 3.
    Liu, C.-C., Chang, S.-J., Huang, G.-Y., & Lin, Y.-Z. (2010). A 10-bit 50-ms/s SAR ADC with a monotonic capacitor switching procedure. IEEE Journal of Solid-State Circuits, 45(4), 731–740.CrossRefGoogle Scholar
  4. 4.
    Zhu, Y., et al. (2010). A 10-bit 100-ms/s reference-free SAR ADC in 90 nm CMOS. IEEE Journal of Solid-State Circuits, 45(6), 1111–1121.CrossRefGoogle Scholar
  5. 5.
    Rahimi, E., & Yavari, M. (2014). Energy-efficient high-accuracy switching method for SAR ADCs. Electronics Letters, 50(7), 499–501.CrossRefGoogle Scholar
  6. 6.
    Zhu, Z., Xiao, Y., & Song, X. (2013). Vcm-based monotonic capacitor switching scheme for SAR ADC. Electronics Letters, 49(5), 327–328.CrossRefGoogle Scholar
  7. 7.
    Sanyal, A., & Sun, N. (2013). SAR ADC architecture with 98% reduction in switching energy over conventional scheme. Electronics Letters, 49(4), 248–250.CrossRefGoogle Scholar
  8. 8.
    Yu, W., Lin, J., & Temes, G. C. (2010). Two-step split-junction SAR ADC. Electronics Letters, 46(3), 211–212.CrossRefGoogle Scholar
  9. 9.
    Lee, J. S., & Park, I. C. (2008). Capacitor array structure and switch control for energy-efficient SAR analog-to-digital converters. In IEEE international symposium on circuits and systems (ISCAS) (pp.236–239).Google Scholar
  10. 10.
    Xie, L., Wen, G., Liu, J., & Wang, Y. (2014). Energy-efficient hybrid capacitor switching scheme for SAR ADC. Electronics Letters, 50(1), 22–23.CrossRefGoogle Scholar
  11. 11.
    Osipov, D., & Paul, S. (2016). Two advanced energy-back sar adc architectures with 99.21 and 99.37% reduction in switching energy. Analog Integrated Circuits and Signal Processing, 87(1), 81–91.CrossRefGoogle Scholar
  12. 12.
    Liu, J., Liu, S., Ding, R., & Zhu, Z. (2018). A 99.77% energy-reduced asymmetric capacitance switching scheme for sar adc with split-capacitor method. Analog Integrated Circuits and Signal Processing, 96(4), 1–10.Google Scholar
  13. 13.
    Zhang, H., Zhang, H., & Zhang, R. (2017). Energy-efficient higher-side-reset-and-set switching scheme for SAR ADC. Electronics Letters, 53(18), 1238–1240.CrossRefGoogle Scholar
  14. 14.
    Ghanavati, B., Abiri, E., Keyhani, A., Salehi, M. R., & Sanyal, A. (2018). An energy efficient SAR ADC with lowest total switching energy consumption. Analog Integrated Circuits and Signal Processing, 97(1), 123–133.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shaanxi Key Lab. of Integrated Circuits and Systems, School of MicroelectronicsXidian UniversityXi’anChina

Personalised recommendations