A 0.8 μVRMS 8-channel front-end for EEG recording

  • Guocheng Huang
  • Tao YinEmail author
  • Haigang YangEmail author
  • Xinxia Cai


A CMOS low-power 8-channel electro-encephalograph front-end circuit is presented. The single-stage instrumental amplifier in each channel employs current-reuse and chopper-stabilization technology to improve power and noise performance. An output-current-tuning ripple reduction loop (RRL) is designed to reduce the intrinsic offset of the instrumental amplifier and attenuate the chopping ripple. The proposed circuit is implemented in standard 0.18 μm CMOS process. The measured mid-band gain of the front-end is 72.5/75/78.2/81 dB and the high-pass cut-off frequency is 110/150/160/210 Hz. An input-referred noise of 0.8 μVRMS (< 100 Hz), 114 dB CMRR and 102 dB PSRR are achieved at a power consumption of 7.4 μW per channel. The proposed RRL helps to suppress the chopping ripple to a level sufficiently lower than the indigenous circuit noise.


Chopper EEG Input impedance boosting Low-noise Low-power Ripple reduction loop 



This work was supported by National Natural Science Foundation of China (Grant: 61474120).


  1. 1.
    Jing, G., Jie, Y., Jiageng, H., Law, J. K. Y., Chi-Kong, Y., & Mansun, C. (2012). 32.9 nV/√Hz −60.6 dB THD dual-band micro-electrode array signal acquisition IC. IEEE Journal of Solid-State Circuits, 47(5), 1209–1220.CrossRefGoogle Scholar
  2. 2.
    Yoo, J., Long, Y., El-Damak, D., Altaf, M. A. B., Shoeb, A. H., & Chandrakasan, A. P. (2013). An 8-channel scalable EEG acquisition SoC with patient-specific seizure classification and recording processor. IEEE Journal of Solid-State Circuits, 48(1), 214–228.CrossRefGoogle Scholar
  3. 3.
    Muller, R., Le, Hanh-Phuc, WenLi, Peter Ledochowitsch, Gambini, Simone, Bjorninen, Toni, Koralek, Aaron, et al. (2015). A minimally invasive 64-channel wireless μECoG implant. IEEE Journal of Solid-State Circuits, 50(1), 344–359.CrossRefGoogle Scholar
  4. 4.
    Qinwen, F., Sebastiano, F., Huijsing, J. H., & Makinwa, K. A. A. (2011). A 1.8 μW 60 nV/√Hz capacitively-coupled chopper instrumentation amplifier in 65 nm CMOS for wireless sensor nodes. IEEE Journal of Solid-State Circuits, 46(7), 1534–1543.CrossRefGoogle Scholar
  5. 5.
    Denison, T., Consoer, K., Santa, W., Avestruz, A. T., Cooley, J., & Kelly, A. (2007). A 2 μW 100nV/rtHz chopper-stabilized instrumentation amplifier for chronic measurement of neural field potentials. IEEE Journal of Solid-State Circuits, 42(12), 2934–2945.CrossRefGoogle Scholar
  6. 6.
    Verma, N., Shoeb, A., Bohorquez, J., Dawson, J., Guttag, J., & Chandrakasan, A. P. (2010). A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system. IEEE Journal of Solid-State Circuits, 45(4), 804–816.CrossRefGoogle Scholar
  7. 7.
    Spinelli, E. M., Martínez, N., Mayosky, M. A., & Pallàs-Areny, R. (2004). A novel fully differential biopotential amplifier with DC suppression. IEEE Transactions on Biomedical Engineering, 51(8), 1444–1448.CrossRefGoogle Scholar
  8. 8.
    Worapishet, Apisak, & Demosthenous, Andreas. (2015). Generalized analysis of random common-mode rejection performance of CMOS current feedback instrumentation amplifiers. IEEE Transactions on Circuits and Systems, 62(9), 2137–2146.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Yazicioglu, R. F., Merken, P., Puers, R., & Van Hoof, C. (2007). A 60 μW 60 nV/√Hz readout front-end for portable biopotential acquisition systems. IEEE Journal of Solid-State Circuits, 42(5), 1100–1110.CrossRefGoogle Scholar
  10. 10.
    Harrison, R. R., & Charles, C. (2003). A low-power low-noise CMOS amplifier for neural recording applications. IEEE Journal of Solid-State Circuits, 38(6), 958–965.CrossRefGoogle Scholar
  11. 11.
    Liu, L., Zou, X., Goh, W. L., Ramamoorthy, R., Dawe, G., & Je, M. (2012). 800nW 43nV/√Hz neural recording amplifier with enhanced noise efficiency factor. Electronics Letters, 48(9), 479–480.CrossRefGoogle Scholar
  12. 12.
    Van Helleputte, N., Konijnenburg, M., Pettine, J., Dong-Woo, J., Hyejung, K., Morgado, A., et al. (2015). A 345 μW multi-sensor biomedical SoC with bio-impedance, 3-channel ECG, motion artifact reduction, and integrated DSP. IEEE Journal of Solid-State Circuits, 50(1), 230–244.CrossRefGoogle Scholar
  13. 13.
    Rong, W., Makinwa, K. A. A., & Huijsing, J. H. (2009). A chopper current-feedback instrumentation amplifier with a 1 mHz 1/f noise corner and an AC-coupled ripple reduction loop. IEEE Journal of Solid-State Circuits, 44(12), 3232–3243.CrossRefGoogle Scholar
  14. 14.
    Jiawei, X., Yazicioglu, R. F., Grundlehner, B., et al. (2011). A 160 μW 8-channel active electrode system for EEG monitoring. IEEE Transactions on Biomedical Circuits and Systems, 5(6), 555–567.CrossRefGoogle Scholar
  15. 15.
    Xu, J., Mitra, S., Matsumoto, A., Patki, S., Hoof, C. V., Makinwa, K. A. A., et al. (2014). A wearable 8-channel active-electrode EEG/ETI acquisition system for body area networks. IEEE Journal of Solid-State Circuits, 49(9), 2005–2016.CrossRefGoogle Scholar
  16. 16.
    Guocheng, H., Tao, Y., Qisong, W., Yuanming, Z., & Haigang, Y. (2015) A 1.3 μW 0.7 μVRMS chopper current-reuse instrumentation amplifier for EEG applications. In Proceedings of IEEE international symposium on circuits and systems (pp. 2624–2627).Google Scholar
  17. 17.
    Mondal, S., Hsu, C. L., Jafari, R., & Hall, D. (2017). A dynamically reconfigurable ECG analog front-end with a 2.5 × data-dependent power reduction. In IEEE custom integrated circuits conference (CICC) (pp. 1–4).Google Scholar
  18. 18.
    Wu, Chung-Yu., Cheng, Cheng-Hsiang, & Chen, Zhi-Xin. (2018). A 16-channel CMOS chopper-stabilized analog front-end ECoG acquisition circuit for a closed-loop epileptic seizure control system. IEEE Transactions on Biomedical Circuits and Systems, 12(3), 543–553.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Electronics, Chinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations