Advertisement

A broadband GaAs pHEMT low noise driving amplifier with current reuse and self-biasing technique

  • Xu ChengEmail author
  • Liang Zhang
  • Feng-Jun Chen
  • Xianjin Deng
Article
  • 13 Downloads

Abstract

A K/Ka-band two-stage low noise driving amplifier using a 0.15 μm GaAs pHEMT for low noise technology is designed and fabricated. In order to achieve broadband driving capability with low power consumption, current reuse technique is adopted to feed both transistors with the same DC power supply, which theoretically cuts the total current consumption in half. In addition, self-biasing technique is utilized to minimize both external power supply pads and chip footprint, which reduces the number of supply pads to a minimum of two (1 power pad and 1 ground pad). The circuit topology analysis and design procedures are also presented with an emphasis on noise figure and P1dB optimization. The low noise driving amplifier demonstrates a − 3 dB bandwidth of wider than 11 GHz, a power gain of 17 dB, an in-band mean noise figure of 2.2 dB and an in-band mean output P1dB of 6 dBm. The DC power consumption is 9.1 mA@3.3 V power supply. The chip size is 1 mm × 1.5 mm with only 1 external DC feed pad (3.3 V) and 1 ground pad (0 V). With the performance comparable to typical two-stage dual-bias low noise driving amplifier counterparts, the proposed MMIC is more attractive to chip/system users in volume-limited and power-contrained applications.

Keywords

GaAs Ka-band Low noise driving amplifier Monolithic microwave integrated circuit (MMIC) Pseudomorphic high electron mobility transistor (pHEMT) 

Notes

Acknowledgements

The authors wish to thank all the collegues for chip fabrication and probe measurement.

References

  1. 1.
    Yu, Y. H., Hsu, W. H., & Chen, Y. J. E. (2010). A Ka-band low noise amplifier using forward combining technique. IEEE Microwave Wireless Components Letters, 20(12), 672–674.CrossRefGoogle Scholar
  2. 2.
    Rocchi, M. (2016). Advanced III/V MMIC process roadmaps for Terahertz applications. In IEEE Mtt-S international microwave workshop series on advanced materials and processes for Rf and Thz applications IEEE.Google Scholar
  3. 3.
    Huang, P. C., et al. (2011). A 17–35 GHz broadband, high efficiency PHEMT power amplifier using synthesized transformer matching technique. IEEE Transactions on Microwave Theory and Techniques, 60(1), 112–119.CrossRefGoogle Scholar
  4. 4.
    Min, B. W., & Rebeiz, G. M. (2007). Ka-band SiGe HBT low noise amplifier design for simultaneous noise and input power matching. IEEE Microwave and Wireless Components Letters, 17(12), 891–893.CrossRefGoogle Scholar
  5. 5.
    Lv, G., Chen, W., Chen, X. (2018). An energy-efficient Ka/Q dual-band power amplifier MMIC in 0.1 μm GaAs process. IEEE Microwave Wireless Components Letters, PP(99):1–3.Google Scholar
  6. 6.
    Hacker, J. B., et al. (2004). An ultra-low power InAs/AlSb HEMT Ka-band low-noise amplifier. IEEE Microwave and Wireless Components Letters, 14(4), 156–158.CrossRefGoogle Scholar
  7. 7.
    Mahmoudidaryan, P., & Medi, A. (2016). Codesign of Ka-band integrated limiter and low noise amplifier. IEEE Transactions on Microwave Theory and Techniques, 64(9), 2843–2852.CrossRefGoogle Scholar
  8. 8.
    Yu, X. P., et al. (2016). A 11.2 mW 48–62 GHz low noise amplifier in 65 nm CMOS technology. Circuits Syst. Signal Process., 35(5), 1–13.CrossRefGoogle Scholar
  9. 9.
    Kanar, T., & Rebeiz, G. M. (2014). X- and K-band SiGe HBT LNAs with 1.2- and 2.2-dB mean noise figures. IEEE Transactions on Microwave Theory and Techniques, 62(10), 2381–2389.CrossRefGoogle Scholar
  10. 10.
    Issakov, V., et al. (2009). ESD-protected 24 GHz LNA for radar applications in SiGe:C technology. In Silicon monolithic integrated circuits in RF systems, 2009. SiRF ‘09. IEEE topical meeting on IEEE, 2009, pp. 1–4.Google Scholar
  11. 11.
    Kanar, T, Rebeiz, G. M. (2013). A 16–24 GHz CMOS SOI LNA with 2.2 dB mean noise figure. In Compound semiconductor integrated circuit symposium IEEE, 2013, pp. 1–4.Google Scholar
  12. 12.
    Lien, C. H. et al. (2000). Ka-band monolithic GaAs PHEMT circuits for transceiver applications. In Microwave conference, 2000 Asia-Pacific IEEE, pp. 1171–1174.Google Scholar
  13. 13.
    Hacker, J. B., et al. (2004). An ultra-low power InAs/AlSb HEMT Ka-band low-noise amplifier. IEEE Microwave and Wireless Components Letters, 14(4), 156–158.CrossRefGoogle Scholar
  14. 14.
    Ellinger, F. (2004). 26-42 GHz SOI CMOS low noise amplifier. IEEE Journal of Solid-State Circuits, 39(3), 522–528.CrossRefGoogle Scholar
  15. 15.
    Shin, S.-C., et al. (2005). 18–26 GHz low-noise amplifiers using 130-and 90-nm bulk CMOS technologies. In Radio frequency integrated circuits (RFIC) symposium, 2005. Digest of papers. 2005 IEEE. IEEE.Google Scholar
  16. 16.
    Yu, Y. H., Hsu, W. H., & Chen, Y. J. E. (2010). A Ka-band low noise amplifier using forward combining technique. IEEE Microwave and Wireless Components Letters, 20(12), 672–674.CrossRefGoogle Scholar
  17. 17.
    Tsai, J. H., Lin, J. Y., Ding, K. Y. (2012). Design of a 9–25 GHz broadband low noise amplifier using 0.15 μm GaAs HEMT process. In International conference on microwave and millimeter wave technology IEEE, pp. 1–4.Google Scholar
  18. 18.
    Armengaud, V., et al. (2009). 27–31 GHz MMIC low noise amplifier with filtering functions for space communication system. In International crimean conference on microwave and telecommunication technology IEEE, pp. 47–48.Google Scholar
  19. 19.
    Nikandish, G., Yousefi, A., & Kalantari, M. (2016). A broadband multistage LNA with bandwidth and linearity enhancement. IEEE Microwave and Wireless Components Letters, 26(10), 834–836.CrossRefGoogle Scholar
  20. 20.
    Kuo, Y.-H., Tsai, J.-H., Chou, W.-H., & Huang, T.-W. (2010). A 24-GHz 3.8-dB NF low-noise amplifier with built-in linearizer. In 2010 Asia-Pacific Microwave Conference. IEEE.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Microsystem and Terahertz Research CenterChina Academy of Engineering PhysicsChengduChina
  2. 2.Institute of Electronic EngineeringChina Academy of Engineering PhysicsMianyangChina

Personalised recommendations