Advertisement

A fully integrated 2.4 dB NF capacitive cross coupling CG-LNA for LTE band

  • Amr A. AbdelhamidEmail author
  • Mehmet T. Ozgun
  • Hakan Dogan
Article
  • 20 Downloads

Abstract

This paper presents a common gate low noise amplifier utilizing a passive feedback network that provides a competitive and highly integrated front-end solution for mobile handset devices. This design utilizes a resistive load instead of the inductive one used in other designs to reduce the on-chip silicon area. The design does not need an external matching network which decrease the area of the PCB while achieving a sufficient input impedance matching, S11. It achieves a measured gain higher than 20 dB, noise figure less than 3 dB and input referred third order intercept point (IIP3) value higher than − 2.5 dBm at 2.3 GHz. The design is implemented in 65 nm UMC CMOS technology, occupies a total area of 0.065 mm2 and consumes 5 mW from a 1.4 V supply.

Keywords

LNA Capacitive cross-coupling Common gate RF receivers 

Notes

Acknowledgements

This work was supported by Tubitak Grant 113E201.

References

  1. 1.
    Wang, Y., Ye, L., Liao, H., Huang, R., & Wang, Y. (2015). Highly reconfigurable analog baseband for multistandard wireless receivers in 65-nm CMOS. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(3), 296–300.CrossRefGoogle Scholar
  2. 2.
    Chen, K. H., & Liu, S. I. (2012). Inductorless wideband CMOS low-noise amplifiers using noise-canceling technique. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(2), 305–314.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Tsai, M. D., Liao, C. F., Wang, C. Y., Lee, Y. B., Tzeng, B., Dehng, G. K. (2014). A multi-band inductor-less SAW-less 2G/3G-TD-SCDMA cellular receiver in 40 nm CMOS. In: Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International 9 Feb 2014 (pp. 354–355).Google Scholar
  4. 4.
    Strange, J., Chang, HH., Muller, P., Ali-Ahmad, W., Beghein, C., Abdeljelil, FB., Lee, WC., Chiu, C., Sin, TY., Lin, TH., Ivory, D. A (2014). HSPA+/WCDMA/EDGE 40 nm modem SoC with embedded RF transceiver supporting RX diversity. In: Radio Frequency Integrated Circuits Symposium, 2014 IEEE 1 Jun 2014 (pp. 133–136).Google Scholar
  5. 5.
    Xie, H., Oliaei, O., Rakers, P., Fernandez, R., Xiang, J., Parkes, J., et al. (2012). Single-chip multiband EGPRS and SAW-less LTE WCDMA CMOS receiver with diversity. IEEE Transactions on Microwave Theory and Techniques, 60(5), 1390–1396.CrossRefGoogle Scholar
  6. 6.
    Georgantas, T., Vavelidis, K., Haralabidis, N., Bouras, S., Vassiliou, I., Kapnistis, C., Kokolakis, Y., Peyravi, H., Theodoratos, G., Vryssas, K., Kanakaris, N. (2015). A 13 mm2 40 nm multiband GSM/EDGE/HSPA+/TDSCDMA/LTE transceiver. In: Solid-State Circuits Conference-(ISSCC), 2015 IEEE International 22 Feb 2015 (pp. 1–3).Google Scholar
  7. 7.
    Abdelhamid, A. A., Ozgun, M. T., Dogan, H (2016). A highly integrated wideband LNA with multiple inputs for multi-band mobile devices. In: Circuits and Systems (MWSCAS), 2016 IEEE 59th International Midwest Symposium on 16 Oct 2016 (pp. 1–4).Google Scholar
  8. 8.
    Moreira, J., Leuschner, S., Stevanovic, N., Pretl, H., Pfann, P., Thüringer, R., Kastner, M., Pröll, C., Schwarz, A., Mrugalla, F., Saporiti, J. (2015). A single-chip HSPA transceiver with fully integrated 3G CMOS power amplifiers. In: Solid-State Circuits Conference-(ISSCC), 2015 IEEE International 22 Feb 2015 (pp. 1–3).Google Scholar
  9. 9.
    Beffa, F., Sin, TY., Tanzil, A., Ivory, D., Tenbroek, B., Strange, J., Ali-Ahmad, W. (2011). A receiver for WCDMA/EDGE mobile phones with inductorless front-end in 65 nm CMOS. In: Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE International 20 Feb 2011 (pp. 370-372).Google Scholar
  10. 10.
    Zhuo, W., Li, X., Shekhar, S., Embabi, S. H., de Gyvez, J. P., Allstot, D. J., et al. (2005). A capacitor cross-coupled common-gate low-noise amplifier. IEEE Transactions on Circuits and Systems II: Express Briefs, 52(12), 875–879.CrossRefGoogle Scholar
  11. 11.
    Sobhy, E. A., Helmy, A. A., Hoyos, S., Entesari, K., & Sánchez-Sinencio, E. (2011). A 2.8-mW sub-2-dB noise-figure inductorless wideband CMOS LNA employing multiple feedback. IEEE Transactions on Microwave Theory and Techniques, 59(12), 3154–3161.CrossRefGoogle Scholar
  12. 12.
    Han, H. G., Jung, D. H., & Kim, T. W. (2015). A 2.88 mW + 9.06 dBm IIP3 common-gate LNA with dual cross-coupled capacitive feedback. IEEE Transactions on Microwave Theory and Techniques, 63(3), 1019–1025.CrossRefGoogle Scholar
  13. 13.
    Zhuo, W., Embabi, S., de Gyvez, JP., Sánchez-Sinencio, E. (2000) Using capacitive cross-coupling technique in RF low noise amplifiers and down-conversion mixer design. In: Solid-State Circuits Conference, 2000. ESSCIRC00. In: Proceedings of the 26 European 19 Sep 2000 (pp. 77–80). IEEE.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics and Computer Engineering, Graduate School of Natural and Applied ScienceIstanbul Sehir UniversityIstanbulTurkey
  2. 2.School of Engineering and Natural SciencesIstanbul Medipol UniversityIstanbulTurkey

Personalised recommendations