A 12bit 250MSPS pipeline ADC with 4 Gbps serial output interface

  • H. J. Wu
  • Z. H. ChenEmail author
  • Z. G. Yu
  • H. C. Ji
  • Y. P. Zeng


A 12bit 250MSPS pipeline analog-to-digital converter (ADC) with serial output interface is presented. The pseudo random digital calibration dithered sub-ADC in first stage is used to lower non-ideal errors and improve the dynamic performance in the high speed ADC. An integrated serial output interface is implemented to convert 12bit parallel data into a differential serial data stream. The pipeline ADC was fabricated with CMOS 180 nm 1.8 V 1P5 M process. The active ADC with the serial output interface consumes a power consumption of 395 mW and occupies an area of 8.0 mm2, where the active area of the interface is 0.75 mm2. The measurement results show that the differential non-linearity and integral non-linearity of the proposed ADC are − 0.22/+ 0.16LSB and − 0.4/+ 0.6LSB, respectively. The spurious free dynamic range and signal-to-noise ratio can get 81.17 dB and 69.92 dB with 20 MHz input signal at full sampling speed. The serial output interface provides an eye height greater than 800 mV for data rates of 4 GHz bits per second with a power of 75 mW.


Pipeline ADC Pseudo random PLL Interface 



This work was supported by Natural Science Foundation of China (No. 61704161), Higher Education Important Science Foundation of Anhui Province (No. KJ2017A396) and Guangzhou Industry-Academia-Research Program (No. 201604016122). The authors would like to thank analog group for the technical discussions, layout and test group for their layout and test contributions.


  1. 1.
    Fukuda, K., Yamashita, H., Ono, G., et al. (2010). A 12.3 mW 12.5-Gbps complete transceiver in 65 nm CMOS process. IEEE Journal of Solid-State Circuits, 45(12), 2838.CrossRefGoogle Scholar
  2. 2.
    Kossel, M., Menolfi, C., Weiss, J., et al. (2008). A T-coil-enhanced 8.5 Gbps high-swing SST transmitter in 65 nm bulk CMOS with < −16 dB return loss over 10 GHz bandwidth. IEEE Journal of Solid-State Circuits, 43(12), 2905.CrossRefGoogle Scholar
  3. 3.
    Lv, J., Ju, H., Yuan, L., et al. (2011). A high speed low jitter LVDS output driver for serial links. Analog Integrated Circuit and Signal Processing, 68, 387.CrossRefGoogle Scholar
  4. 4.
    Junsheng, L., Hao, J., Mao, Y., et al. (2014). A 5 Gb/s low power current-mode transmitter with pre-emphasis for serial links. Chinese Journal of Semiconductors, 34(7), 065004-1-5.Google Scholar
  5. 5.
    Devarajan, S., Singer, L., Kelly, D., et al. (2009). A 16-bit, 125 MS/s, 385 mW, 78.7 dB SNR CMOS pipeline ADC. IEEE Journal of Solid-State Circuits, 44(12), 3305.CrossRefGoogle Scholar
  6. 6.
    Ali, A. M. A., Dinc, H., Bhoraskar, P., et al. (2009). A 14-bit 1GS/s RF sampling pipelined ADC with background calibration. IEEE Journal of Solid-State Circuits, 49(12), 2857.CrossRefGoogle Scholar
  7. 7.
    Li, J., & Moon, U.-K. (2003). Background calibration techniques for multistage pipelined ADCs with digital redundancy. IEEE Transactions on Circuits and Systems II, 50(9), 185.Google Scholar
  8. 8.
    Shi, L., Zhao, W., Jianhui, W., & Chen, C. (2012). Digital background calibration techniques for pipelined ADC based on comparator dithering. IEEE Transactions on Circuits and Systems II, 59(4), 239.CrossRefGoogle Scholar
  9. 9.
    Ahja, B. K. (1976). An improved frequency compensation technique for CMOS operational amplifiers. IEEE Journal of Solid-State Circuits, 18(6), 629–633.CrossRefGoogle Scholar
  10. 10.
    Wang, X., Yang, C., Zhao, X., Wu, C., Li, F., Wang, Z., & Wu, B. (2012). A 12-bit, 270MS/s pipelined ADC with SHA-eliminating front end. In IEEE International Circuits and Systems (p. 798).Google Scholar
  11. 11.
    Liechti, T., Tajalli, A., Akgun, O. C., Toprak, Z., & Leblebici, Y. (2008). A 1.8 V 12-bit 230-MS/s pipeline ADC in 0.18 μm CMOS technology. In IEEE International Circuits and Systems (pp. 21–24).Google Scholar
  12. 12.
    Shin, S. K., Rudell, J. C., Daily, D. C., et al. (2014). A 12-bit, 200MS/s zero-crossing based pipelined ADC with early sub-ADC decision and output residue background calibration. IEEE Journal of Solid-State Circuits, 49(6), 1366.CrossRefGoogle Scholar
  13. 13.
    Sahoo, B. D., & Razavi, Behzad. (2009). A 12-bit, 200 MHz CMOS ADC. IEEE Journal of Solid-State Circuits, 44(9), 2366.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.No.58 Research InstituteChina Electronic Technology Group CorporationWuxiChina
  2. 2.College of Electronic EngineeringHuangshan UniversityHuangshanChina

Personalised recommendations